SUPPORTING INFORMATION

Improving the nutrient removal performance of surface flow constructed wetlands in winter using hardy submerged plant-benthic fauna systems

Ying Guo^a, Huijun Xie^b, Jian Zhang^{a,c,*}, Wengang Wang^d, Huu Hao Ngo^e, Wenshan

Guo^e, Yan Kang^a, Bowei Zhang^b

^aShandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China

^bEnvironmental Research Institute, Shandong University, Jinan 250100, China ^cState key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China

^dShandong Academy of Environmental Science, Broadway, Jinan 250100, PR China ^eSchool of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia

> *Correspondence: zhangjian00@sdu.edu.cn (J. Zhang) Tel: 0086-531-88361185, Fax: 0086-531-8836978

Fig.S1. Air, water temperature during the experiment period

Fig.S2. Treatment performance on NH_4^+ -N, NO_3^- -N, TN and TP for each group during two unstable operating cycles

Fig.S3. Treatment performance on COD for each group during four typical operating cycles (a) Typical DO profile in each group (b)

Fig. S4 Picture showing the burrows produced by chironomid larvae at the US layer

Target gene	Primer	Primer sequence (5'-3')	Amplification size (bp)	Reference	
Bacterial 16S rBNA	338F	ACTCCTACGGGAGGCAGCAG	180	(Muyzer et al., 1993)	
Dacienai 105 INNA	518R	ATTACCGCGGCTGCTGG	100		
amo A	amo598f	GAATATGTTCGCCTGATTG	120	(Dionisi et al., 2002)	
umon	amo718r	CAAAGTACCACCATACGCAG	120		
nirK	nirK583F	TCA TGGTGCTGCCGCGKGACGG	326	(Liu et al., 2003)	
10011	nirK909R	GAA CTTGCCGGTKGCCCAGAC	520		
nirS	nirScd3aF	GT(C/G)AACGT(C/G)AAGGA(A/G)AC(C/G)GG	425	(Kandeler et al., 2006)	
	nirSR3cd	GA(C/G)TTCGG(A/G)TG(C/G)GTCTTGA	.20		

 Table S1. Primers of target genes used in qPCR analysis.

	Total dry weig	ght of plant (g)	Total dry weight of larvae (g)			
	initial	final	initial	final		
CWs-PC	0.23 ± 0.02	4.10 ± 0.83	18.26 ± 0.44	19.07 ± 0.12		
CWs-P	0.20 ± 0.03	1.30 ± 0.14	-	-		

	Table S2	. Total	biomass	over	the	course	of	the	experimer	ıt
--	----------	---------	---------	------	-----	--------	----	-----	-----------	----

--: means no data

CWs	Sample	OTUs	Shannon	Simpson(10-1)	ACE	Chao	Good's coverage(%)
CWa D	Superincumbent substrate layer	2899	9.11	9.90	3488.34	3468.78	98.2
Cws-P	Underlying substrate layer	1589	6.16	9.12	2076.12	2023.16	98.8
	Superincumbent substrate layer	2935	9.48	9.96	3476.69	3493.08	98.2
CWs-PC	Underlying substrate layer	1727	6.44	9.30	2241.50	2248.49	98.7
	Larvae body	2001	6.11	9.27	3296.32	3658.37	97.7

Table S3. Comparison of phylotype coverage, diversity and richness estimators at a phylogenetic distance of 3%	

References for supplementary materials

Dionisi, H.M., Layton, A.C., Harms, G., Gregory, I.R., Robinson, K.G., Sayler, G.S., 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. *Appl. Environ. Microb.* **68**(1), 245-253.

Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D., Philippot, L., 2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. *Appl. Environ. Microb.* **72**(9), 5957-5962.

Liu, X., Tiquia, S.M., Holguin, G., Wu, L., Nold, S.C., Devol, A.H., Luo, K., Palumbo, A.V., Tiedje, J.M., Zhou, J., 2003. Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific coast of Mexico. *Appl. Environ. Microb.* **69**(6), 3549-3560.

Muyzer, G., De Waal, E.C., Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Appl. Environ. Microb.* **59**(3), 695-700.