Supporting Information

First *in situ* vesicular self-assembly of 'binols' generated by twocomponent aerobic oxidation reaction

Braja G. Bag,* Subrata Ghorai, Saikat K. Panja, Shaishab K. Dinda, Koushik Paul Department of Chemistry and Chemical Technology Vidyasagar University Midnapore 721102, WB, India E-mail: *brajagb@gmail.com*

SI. No.	CONTENTS				
1	Model schematic representation of self-replication				
2	Gelation property study and Thermodynamic parameter calculation				
3	Morphology analysis of self- assemblies by SEM , AFM, TEM				
4	Histogram of the size of vesicles from Optical Microscopy				
5	Low angle X-ray diffraction of self-assemblies	7			
6	Dynamic Light Scattering	8			
7	Fluorescence emission spectra	9			
8	HPLC profiles for the oxidative coupling of 1b to 2b	10			
9	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 2d	11-13			
10	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 2c	14-16			
11	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 2b	17-19			
12	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 2a	20-22			
13	¹ H-NMR, ¹³ C- NMR , HRMS spectra of compound 1d	23-24			
14	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 1c	25-27			
15	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 1b	28-30			
16	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 1a	31-33			
17	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 6	34-36			
18	¹ H-NMR, ¹³ C- NMR,DEPT- 90, DEPT -135, HRMS spectra of compound 3	37-39			

Scheme S1: Model schematic representation of self-replication of binols where the D::::A represents donor-acceptor noncovalent interactions

Study of Gelation Property:

The compounds (**2b-d**) attached with long alkyl chain to binol system are excellent gelator for the mixed solvents basically in alkane solvents; here very little amount of chloroform is used only to solubilize i.e. to make a super saturated solution during gel formation. A survey of CGC values show that compound **2d** is the best gelator among all.

Gelation Study in Cyclohexane/Chloroform (6:1 V/V):

All the gels were thermo-reversible in nature. Hence the gel to sol transition temperature T_{gel} were plotted against the gelator concentration (mM). With increase in the concentration of the gelator the T_{gel} increased indicating stronger intermolecular interactions and increased branching at higher concentrations.

Entry	Conc.(%w/v)	<i>Tgel</i> (°C) of	<i>Tgel</i> (°C) of	<i>Tgel</i> (°C) of
		compound 2b	compound 2c	compound 2d
1	0.833	54	55	58
2	1.00	58	60	65
3	1.25	63	65	70
4	1.66	70	73	74
5	2.5	77	80	84

Thermodynamic parameters Calculation:

Various thermodynamic parameters (ΔH° , ΔS° and ΔG°) during gel to sol phase transitions were calculated from the variation of T_{gel} with concentrations. The positive free energy changes (ΔG° values) obtained in both of the cases studied during gel to sol transition indicated the stability of the gels. The free energy changes during gel to sol transition of compound **2b-d** in cyclohexane/CHCl₃ (6:1 v/v) were calculated as

Calculation:

The thermo-reversibility of a gel can be expressed as:

Gel→liquid

The equilibrium constant can be expressed as ;

K_{eqm} = [Gelator]/ [Gel]

Assuming unit activity of the gel, the equilibrium constant can be expressed as :

K = [Gelator]

The Gibbs free energy change (ΔG°) during gel melting can be obtained by the following equation

 $\Delta G^{\circ} = - RTInK = \Delta H^{\circ} - T\Delta S^{\circ}$

Hence, $InK = -\Delta H^{\circ} / RT + \Delta S^{\circ} / R$

The gel melting temperature (T_{gel}) increases with increasing concentration of the "gelator".

Figure S1. Plot of InK vs 1/T where T is the gel to sol transition temperature T_{gel} (a) **2b**, (b) **2c**, (c) **2d**

Figure S2. (a) AFM images of 0.12 % (w/v) **2c** in 6:1 cyclohexane-chloroform , (b,c) AFM images of 0.14% (w/v) **2d** in 6:1 heptane-chloroform and octane-chloroform, (d) SEM image of (0.11% w/v) 2d in (6:1 v/v) chloroform/dodecane and **(e,f)** TEM images of 0.10 % (w/v) **2d** in 6:1 cyclohexane-chloroform .Samples were collected after 4h on a glass plate, dried slowly and then under reduced pressure and sputter coated with Au for 60 s and analyzed.

Figure S3. Histogram from OPM (a) 3.2 % of **2c** in 5:1 (v/v) DMSO-Water; (b) 3.25 % of **2d** in 5:1 (v/v) DMSO-Water

Figure S4. X-ray diffraction studies of the self-assemblies of 2c (0.11% w/v) in DMSO-water (5:1 v/v).

DLS studies: Dynamic light scattering (DLS) studies were carried out in a Zetasizer Nanoseries instrument (Model Nano ZS90). In all the cases studied, polydisperse self-assemblies of varied diameters were observed. For **2c** (0.10% w/v) and **2d** (0.10% w/v) in cyclohexane-chloroform (6:1 v/v), average size of 310.8 nm and 151.5 nm respectively were observed. For the self-assemblies of **2d** (0.10% w/v) in octane-chloroform (6:1), the average size was 75.3 nm.

Figure S5. Dynamic light scattering (DLS) studies of **(a) 2d** in 6:1 (v/v) n-octane-chloroform (0.10% w/v), (b) **2d** in 6:1 (v/v) cyclohexane-chloroform (0.10% w/v), (c) **2c** in 6:1 (v/v) cyclohexane-chloroform (0.10% w/v), (c) **2c** in 6:1 (v/v) cyclohexane-chloroform (0.10% w/v).

Figure S6. Fluorescence emission spectra (λ_{max} 510 nm) of release of encapsulated Rho-B by sonication at different duration of sonication time, a = 45 min, b = 30 min, c = 15 min, (d) encapsulated Rho-B inside the vesicular self-assemblies of **2d** after 24 h.

Figure 7: HPLC profiles for the oxidative coupling of **1b** to **2b**. Aliquots were collected at 10 min time intervals. Increase in the concentration of the dimer **2b** was observed with concomitant decrease of the monomer **1b** at the initial stage of the reaction. The reaction mixture became heterogeneous after about an hour.

¹³C-NMR, CDCl₃ (100 MHz)

¹H-NMR, CDCl₃ (400 MHz)

190 160 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

DEPT-90, CDCl₃ (100 MHz)

DEPT-135, CDCl₃ (100 MHz)

¹³C-NMR, CDCl₃ (100 MHz)

DEPT-135, CDCl₃ (100 MHz)

¹H-NMR, DMSO-d₆ (400 MHz)

DEPT-135, DMSO-d₆ (100MHz)

¹H-NMR, CDCl₃ (400 MHz)

1H-NMR, $CDCI_3$ (400 MHz)

DEPT-90, CDCl₃ (100MHz)

DEPT-135, CDCl3 (100MHz)

¹H-NMR 400 MHz(CDCl₃)

DEPT-135, CDCl3 (100 MHz)

¹³C-NMR, DMSO-d₆ (100 MHz)

HRMS

¹³C-NMR, CDCl₃ (100 MHz)

HRMS

DEPT-90, CDCl₃ (100 MHz)

