## Electronic supplementary information

## Universally applicable, quantitative PCR method utilizing fluorescent

## nucleobase analogs

Hyo Yong Kim<sup>1†</sup>, Taihua Li<sup>2†</sup>, Cheulhee Jung<sup>1</sup>, Rongzhan Fu<sup>1</sup>, Dae-Yeon Cho<sup>3</sup>, Ki Soo Park<sup>4\*</sup>, and Hyun Gyu Park<sup>1\*</sup>

<sup>1</sup> Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

<sup>2</sup> College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan road, Nanjing, Jiangsu, 210-037, China

<sup>3</sup> Labgenomics Clinical Research Institute, Labgenomics Co. Ltd., Yong-In, 449-795, Republic of Korea

<sup>4</sup> Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea

\* Corresponding authors:

E-mail: <u>hgpark@kaist.ac.kr</u> (H.G. Park); Tel: +82-42-350-3932; Fax: +82-42-350-3910. E-mail: <u>kskonkuk@gmail.com</u> (K.S. Park); Tel: +82-2-450-3742; Fax: +82-2-450-3742.

<sup>†</sup> These authors equally contributed to this work.

| Experiment              |            | Oligonucleotide name    | Sequence (5'→3')                                                              |
|-------------------------|------------|-------------------------|-------------------------------------------------------------------------------|
| Optimization            |            | 1 PdC-incorporated DNA  | TCC TCA GAA GTT TAT GCA $\mathbf{X}^{(a)}$ T                                  |
|                         |            | 2 PdCs-incorporated DNA | TCC TXA GAA GTT TAT GCA XT                                                    |
|                         |            | 3 PdCs-incorporated DNA | TC <b>X</b> T <b>X</b> A GAA GTT TAT GCA <b>X</b> T                           |
| PdC-based<br>qPCR       | Signal-off | F primer                | CTA GGC GTT TGT ACT CCG TGA                                                   |
|                         |            | R primer                | TC <b>X</b> T <b>X</b> A GAA GTT TAT GCA <b>X</b> T                           |
|                         | Signal-on  | F primer                | AGA GAG AGA GAG AGA GAG<br>AG <sup>(b)</sup> C AAT GGC TAA TGC CGG<br>ATA CGC |
|                         |            | R primer                | GGT ACC GTC AGT CTG CAA T                                                     |
|                         |            | UFB probe               | CTC TCT CTC TCT XTX TXT CT                                                    |
| TaqMan probe-based qPCR |            | F primer for CT         | CTA GGC GTT TGT ACT CCG TCA                                                   |
|                         |            | R primer for CT         | TGG TGG GGT TAA GGC AAA TCG                                                   |
|                         |            | TaqMan probe for CT     | [FAM] <sup>(c)</sup> CCG CAC GTT CTC TCA<br>AGC AGG ACT ACA [BHQ]             |
|                         |            | F primer for MH         | GCC ACA TTG GGA CTG AGA TAC<br>G                                              |
|                         |            | R primer for MH         | ACA GCA CTT TAC AAT CCG AAG<br>ACC                                            |
|                         |            | TaqMan probe for MH     | [FAM] TGC ACG CTG TGT CGC TCC<br>ATC AAG CT [BHQ]                             |

Table S1 Oligonucleotide sequences employed in this study.

(a) The bold X indicates PdC.(b) The red-colored sequences indicate the 5'-overhang sequences where the UFB probe binds.(c) The bracket indicates the labeling of fluorophore (FAM) and quencher (BHQ).

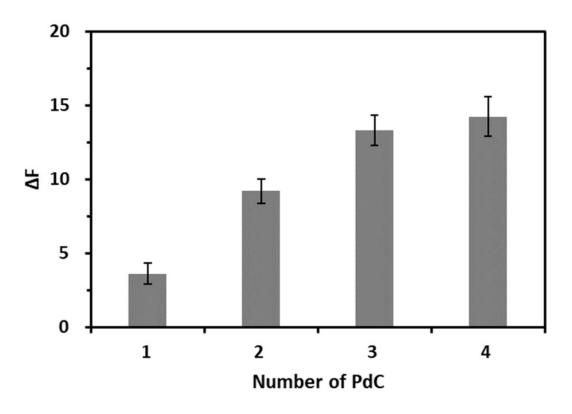



Fig. S1 The effect of the number of PdC on hybridization-induced fluorescence signal change.  $\Delta F$  is defined as F<sub>0</sub>-F where F<sub>0</sub> and F are fluorescence signal intensities measured before and after addition of complementary DNA strand, respectively.

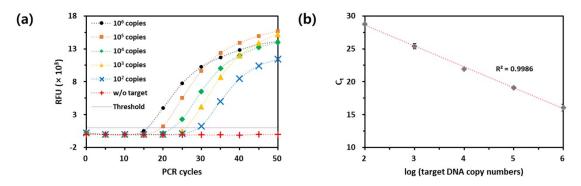



Fig. S2 Quantitative analysis of target nucleic acids from CT using TaqMan probe-based qPCR method. (a) Real-time fluorescence signals from the reaction solutions with varying initial copy numbers of target nucleic acids. (b) Linear relationship between  $C_t$  and logarithm of initial copy number of target nucleic acids  $(10^2 - 10^6 \text{ copies})$ .

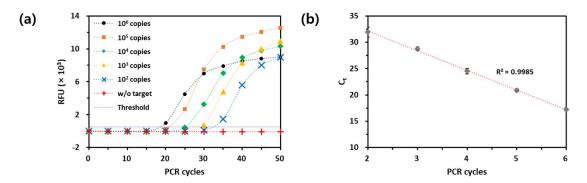



Fig. S3 Quantitative analysis of target nucleic acids from MH using TaqMan probe-based qPCR method. (a) Real-time fluorescence signals from the reaction solutions with varying initial copy numbers of target nucleic acid. (b) Linear relationship between  $C_t$  and logarithm of initial copy number of target nucleic acids  $(10^2 - 10^6 \text{ copies})$ .