Supporting information

Synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3dihydroquinazolin-4(1*H*)-ones under metal-free and solvent-free conditions

Phuong Hoang Tran,* Thanh-Phuong Thi Bui, Xuan-Quynh Bach Lam, Xuan-Trang Thi Nguyen

Table of content

Section S1. Chemicals and instruments Section S2. Synthesis of [(4-SO ₃ H)BMIM]HSO ₄ under solvent-		
Section S3. General procedure and spectral data of	S8-S18	
benzo[4,5]imidazo[1,2-a]pyrimidines.		
Section S4. General procedure and spectral data of 2,3-	S18-S21	
dihydroquinazolin-4(1 <i>H</i>)-one		
Section S5. ¹ H and ¹³ C NMR spectra		
Section S6. References	S49	

Section S1. Chemicals and instruments

1,4-butanesultone (99%), anthranilamide (99%), benzaldehyde (99%), 4methylbenzaldehyde (98%), 1-methylimdazole (99%), ethyl acetoacetate (99%), (99%). benzaldehyde 4-methoxybenzaldehyde (98%), 4fluorobenzaldehyde (98%), 4-chlorobenzaldehyde (97%), 4-nitrobenzaldehyde (98%), 3-chlorobenzaldehyde (97%), (97%), 4-methylbenzaldehyde (98%), 4cyclohexanecarboxaldehyde (97%), 4- tertbutylbenzaldehyde (98%), 2fluorobenzaldehyde (97%), 2-chlorobenzaldehyde (98%), 4hydroxybenzaldehyde (98%) 2-nitrobenzaldehyde (98%), piperonal (99%), acetyl acetate (99%), 2-aminobenzimidazole (97%), sulfuric acid (H_2SO_4) were obtained from Sigma-Aldrich Chemical Company.

TLC plates (silica gel 60 F254), acetone, n-hexane, petroleum ether were obtained from Merck. Deuterated solvents, D₂O and DMSO- d_6 , were purchased from Cambridge Isotope Laboratories (Andover, MA) and used without further purification. With Ag were obtained from Armar (Switzerland). Ethyl acetate (purity \geq 99.5%), *n*-hexane, and chloroform (purity \geq 99%), ethanol (purity \geq 99.8%), acetone (purity \geq 99%),), methanol (99%), diethyl ether (purity \geq 99.5%), were obtained from Merck. All starting materials were used without further purification.

GC–MS spectra were performed on an Agilent GC System 7890 equipped with a mass selective detector Agilent 5973N and a capillary DB–5MS column (30 m x 250 μ m x 0.25 μ m). FT-IR spectra were analyzed from KBr pellets by a Bruker Vertex 70. ¹H and ¹³C NMR spectra were recorded on a Bruker Advance 500. HRMS (ESI) data were performed on Bruker micrOTOF-QII MS at 80 eV.

Section S2. Synthesis of [(4-SO₃H)BMIM]HSO₄ under solvent-free sonication

The synthesis of the $[(4-SO_3H)BMIM]HSO_4$ was synthesized *via* one-pot twostep procedure according to the our previous literature:¹

The first step: 1-Methylimidazole (1.5 mmol, 0.123 g) and 1,4-butane sultone (1.5 mmol, 0.204 g) were added into a 10 mL pressurized glass tube with

Teflon-coated septum. The reaction mixture was irradiated by ultrasound for 5 min at 80 °C (37 kHz). After completion of the reaction, the zwitterion $[4-(SO_3)BMIM]^+$ was washed with diethyl ether (6 x 5 mL), and dried under vacuum at 80 °C for 30 min to give the pure product.

The second step: A mixture of $[4-(SO_3^-)BMIM]^+$ (1.5 mmol, 0.327 g) and sulfuric acid 98% (1.5 mmol, 0.147 g) was added into a 10 mL pressurized glass tube with Teflon-coated septum, which was irradiated by ultrasound for 60 min at 60 °C (37 kHz). The mixture reaction was washed with diethyl ether (10 x 3 mL). Then, the mixture [(4-SO_3H)BMIM]HSO₄ was dried under vacuum at 40 °C. The product was then characterized by ¹H and ¹³C NMR, FT-IR, TGA, and HR-MS (ESI).

Entry	Time (min)	Temperature (°C)	Isolated yield (%)
1	5	50	65
2	5	60	76
3	5	70	88
4	5	80	99
5	1	80	42
6	3	80	57

 Table S1. Optimization of reaction condition for the first step.

Table S2. Optimization of reaction conditions for the second step.

Entry	Time (min)	Temperature (°C)	Isolated yield (%)
1	30	RT (30)	0
2	30	40	21
3	30	50	34
4	30	60	53
5	30	70	40
6	40	60	75
7	60	60	95
8	90	60	97

¹H NMR, ¹³C NMR, IR, TGA, and HR-ESI-MS of 1-(4-sulfobutyl)-3methylimidazolium hydrogen sulfate

1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate¹

$$HSO_{4}^{\bigcirc}$$

$$\swarrow N \swarrow N \checkmark SO_{3}H$$

FT-IR (KBr, 4000 – 400 cm⁻¹) 3410, 1639, 1457, 1171, 1042, 752. ¹**H NMR** (500 MHz, D₂O) δ 8.59 (s, 1H), 7.35 (t, *J* = 1.7 Hz, 1H), 7.29 (t, *J* = 1.7 Hz, 1H), 4.10 (t, *J* = 7.0 Hz, 2H), 3.75 (s, 3H), 2.83 (t, *J* = 8.0, 2H), 1.82 (m, 2H), 1.60 (m, 2H).

¹³C NMR (125 MHz, D₂O) δ 135.9, 123.6, 122.1, 50.0, 48.9, 35.7, 28.1, 20.9.
HRMS (ESI) *m/z* calcd for [M⁺] C₈H₁₅N₂O₃S⁺ 219.0798; found 219.0783.

-8.59

Figure 1. ¹H (top) and ¹³C (bottom) NMR spectra of 1-(4-sulfobutyl)-3methylimidazolium hydrogen sulfate

Figure 2. FT-IR spectrum of 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate

Figure 3. HR-ESI-MS 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate.

Figure 4. TGA of *1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate* Section S3. General procedure and spectral data of benzo[4,5]imidazo[1,2-a]pyrimidines.

General procedure of benzo[4,5]imidazo[1,2-a]pyrimidines synthesis

A mixture of benzaldehyde (106 mg, 1 mmol), ethyl acetoacetate (130 mg, 1 mmol), 2-aminobenzimidazole (133 mg, 1 mmol) and [(4-SO₃H)BMIM]HSO₄ (31.6 mg, 0.1 mmol) was heated 100 °C and the process of reaction monitored by TLC. After completion of the conversion, the reaction mixture was quenched with cold ethanol (10 mL). The crude product was filtered and washed with petroleum ether (10 mL) and then purified by recrystallization from ethanol to obtain the desired product.

Spectral data of benzo[4,5]imidazo[1,2-a]pyrimidines synthesis Ethyl 2-methyl-4-phenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxylate^{2, 3}

mp 287-288 °C

¹**H** NMR (500 MHz, DMSO-*d*₆): δ 7.35 (m, 1H), 7.25 (m, 1H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.41 (s, 1H), 4.07 – 3.96 (m, 1H), 2.45 (s, 1H), 2.07 (s, 1H), 1.13 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.7, 146.9, 146.1, 142.7, 142.5, 132.0, 128.8, 128.2, 128.2, 127.5, 127.5, 122.2, 120.6, 117.2, 110.3, 98.4, 59.8, 56.4, 19.6, 14.5.

*Ethyl 4-(4-methoxyphenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate*²

mp 269-270 °C

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.33 (d, *J* = 7.5 Hz, 1H), 7.25 (m, 3H), 7.06 – 7.01 (m, 1H), 6.98 – 6.90 (m, 1H), 6.80 (d, *J* = 8.5 Hz, 2H), 6.37 (s, 1H), 4.14 – 3.91 (m, 2H), 3.66 (s, 3H), 2.44 (s, 3H), 1.15 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.7, 159.1, 146.6, 146.1, 142.8, 134.6, 132.0, 128.7, 128.7, 122.2, 120.6, 117.2, 114.1, 114.1, 110.3, 98.7, 59.8, 55.8, 55.4, 19.0, 14.6.

*Ethyl 4-(4-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate*³

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.40 (m, 2H), 7.34 (d, *J* = 8 Hz, 1H), 7.26 (d, *J* = 8 Hz, 1H), 7.11 – 7.01 (m, 2H), 6.95 (m, 1H), 6.45 (s, 1H), 4.12 – 3.90 (m, 1H), 2.45 (s, 3H), 1.14 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-d₆) δ 165.6, 161.9 (d, J = 244.0 Hz), 147.1, 145.9, 142.7, 138.8, 131.9, 129.7, 129.6, 122.3, 120.7, 117.3, 115.7, 115.6, 110.3, 98.3, 59.9, 55.7, 19.1, 14.5.

*Ethyl 4-(4-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate*²

mp 286-287 °C

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.46 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.32 - 7.19 (m, 4H), 7.10 - 7.03 (m, 1H), 7.00 - 6.93 (m, 1H), 6.46 (s, 1H), 4.21 - 3.76 (m, 2H), 2.46 (s, 3H), 1.15 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.5, 147.5, 145.9, 144.9, 142.7, 133.3, 131.9, 130.9, 128.3, 127.6, 126.1, 122.4, 120.8, 117.4, 110.3, 97.8, 59.9, 55.8, 19.1, 14.5.

*Ethyl 2-methyl-4-(4-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate*³

mp >350 °C

¹**H NMR (500 MHz, DMSO-d₆)** δ 8.13 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.60 (s, 1H), 4.02 (m, 2H), 2.47 (s, 3H), 1.15 (t, J = 7.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.4, 149.5, 147.4, 145.7, 132.3, 131.8, 129.0, 124.2, 124.1, 122.5, 120.9, 117.5, 110.2, 97.3, 60.0, 55.7, 19.2, 14.5.

Ethyl 4-(3-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidine-3-carboxylate²

mp 269-270 °C

¹H NMR (500 MHz, DMSO- d_6) δ 7.35 (dt, J = 11.3, 8.5 Hz, 5H), 7.25 (d, J = 8.0 Hz, 1H), 7.08 – 7.01 (m, 1H), 6.98 – 6.92 (m, 1H), 6.44 (s, 1H), 4.25 – 3.67 (m, 2H), 2.45 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.6, 147.3, 145.9, 142.7, 141.4, 132.8, 131.9, 129.5, 129.5, 128.8, 128.8, 122.4, 120.7, 117.3, 110.3, 98.0, 59.9, 55.7, 19.1, 14.5.

Ethyl 4-(2-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate³

mp 288-289 °C

¹**H** NMR (500 MHz, DMSO- d_6) δ 7.49 – 7.41 (m, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.31 – 7.22 (m, 1H), 7.17 – 7.08 (m, 3H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.64 (s, 1H), 4.09 – 3.81 (m, 2H), 2.47 (s, 3H), 1.09 (t, J = 7.3 Hz, 3H.

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.5, 159.9 (d, *J* = 246.7 Hz), 147.9, 145.8, 142.6, 132.0, 130.6 (d, *J* = 8.4 Hz), 130.4 (d, *J* = 3.7 Hz), 128.9 (d, *J* = 12.6 Hz), 125.1 (d, *J* = 3.0 Hz), 122.4, 120.8, 117.4, 115.9 (d, *J* = 21.9 Hz), 109.3 (d, *J* = 1.8 Hz), 96.4, 59.8, 50.9 (d, *J* = 2.6 Hz), 19.1, 14.3.

*Ethyl 4-(2-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate*²

mp 290-291 °C

¹H NMR (500 MHz, DMSO- d_6) δ 7.45 (d, J = 7.5 Hz, 1H), 7.40 – 7.32 (m, 2H), 7.30 – 7.18 (m, 3H), 7.06 – 7.02 (m, 1H), 6.95 (m, 1H), 6.75 (s, 1H), 4.10 – 3.88 (m, 2H), 2.46 (s, 3H), 1.08 (t, J = 7.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.5, 147.8, 145.7, 142.2, 139.3, 132.2, 132.1, 131.0, 130.1, 130.0, 128.3, 122.4, 120.8, 117.4, 109.7, 96.8, 67.4, 59.8, 19.1, 14.5.

*Ethyl 2-methyl-4-(2-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate*⁴

mp 286-288 °C

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.91 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.43 (m, 3H), 7.26 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.11 (s, 1H), 7.10 – 7.07 (m, 1H), 7.00 – 6.95 (m, 1H), 4.03 – 3.97 (m, 1H), 3.94 – 3.88 (m, 1H), 2.42 (s, 3H), 1.05 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.4, 148.3, 147.8, 145.9, 137.3, 134.7, 134.7, 132.2, 129.7, 129.5, 124.5, 122.7, 121.3, 117.6, 110.0, 97.9, 60.1, 51.1, 19.4, 14.5.

Ethyl 4-(benzo[d][1,3]dioxol-5-yl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate⁵

mp 245 - 247 °C

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.34 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.89 – 6.83 (m, 2H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.36 (s, 1H), 5.92 (d, *J* = 6.5 Hz, 2H), 4.13 – 3.94 (m, 2H), 2.44 (s, 3H), 1.16 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.7, 147.7, 147.1, 146.8, 146.0, 136.5, 132.0, 122.2, 121.1, 120.6, 117.2, 115.2, 110.5, 108.4, 107.8, 101.5, 98.5, 59.8, 56.1, 19.0, 14.6.

1-(2-methyl-4-phenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3yl)ethan-1-one⁶

mp 329-330 °C

¹H NMR (500 MHz, DMSO- d_6) δ 7.39 (m, 3H), 7.33 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.17 (dd, J = 13.4, 6.0 Hz, 1H), 7.07 – 7.02 (t, J = 7.3 Hz 1H), 7.01 – 6.95 ((t, J = 7.3 H, 1H), 6.56 (s, 1H), 2.47 (s, 1H), 2.22 (s, 1H).

1-(2-methyl-4-(4-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one⁷

mp 304 - 305 °C

¹**H NMR (500 MHz, DMSO-***d*₆) δ 8.12 (m, 2H), 7.66 (m, 2H), 7.37 (t, *J* = 7.0 Hz, 2H), 7.10 – 7.02 (m, 1H), 6.99 - 6.96 (m, 1H), 6.70 (s, 1H), 2.51 (s, 1H), 2.28 (s, 1H)

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.6, 149.1, 147.8, 147.4, 145.6, 142.5, 131.8, 128.9, 128.9, 124.2, 124.2, 122.7, 121.2, 117.5, 110.3, 109.0, 55.5, 31.4, 20.4

1-(4-(2-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one⁷

mp 291-292 °C

¹H NMR (500 MHz, DMSO- d_6) δ 7.47 (d, J = 7.5 Hz, 1H), 7.35 (m, 2H), 7.28 - 7.25 (m, 2H), 7.21 (td, J = 7.7, 1.4 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.81 (s, 1H), 2.48 (s, 3H), 2.24 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.6, 146.6, 145.7, 142.4, 139.1, 132.2, 132.0, 131.1, 130.2, 130.1, 128.3, 122.5, 120.9, 117.4, 109.9, 108.8, 54.5, 31.4, 20.3.

1-(2-methyl-4-(2-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one⁷

mp 305-306 °C

¹H NMR (500 MHz, DMSO- d_6) δ 7.82 (d, J = 8.0 Hz, 1H), 7.51 - 7.47 (m, 2H), 7.45 - 7.35 (m, 2H), 7.14 (d, J = 8.0 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 7.05 (s, 1H), 6.99 (t, J = 7.5 Hz, 1H), 2.49 (s, 3H), 2.25 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.2, 148.8, 147.4, 145.9, 142.6, 137.3, 134.1, 132.4, 129.2, 128.9, 124.1, 122.7, 121.3, 117.6, 110.7, 110.1, 51.2, 31.9, 31.1, 20.6.

1-(4-(4-methoxyphenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one²

mp 276-278 °C

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.41 (d, *J* = 7.5 Hz, 1H), 7.35 – 7.31 (m, 3H), 7.04 (td, *J* = 7.5, 1.1 Hz, 1H), 6.98 (td, *J* = 7.5, 1.1 Hz, 1H), 6.85 – 6.77 (m, 2H), 6.55 (s, 1H), 3.65 (s, 3H), 2.46 (s, 3H), 2.20 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.9, 159.2, 146.3, 145.9, 142.8, 134.2, 132.1, 128.9, 128.9, 122.2, 120.6, 117.3, 114.3, 114.3, 110.5, 109.2, 55.6, 55.5, 31.0, 20.1.

1-(4-(4-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one⁷

mp 319-322 °C

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 7.47 – 7.41 (m, 2H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.10 – 7.03 (m, 3H), 7.01 – 6.97 (m, 1H), 6.60 (s, 1H), 2.48 (s, 3H), 2.23 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.6, 161.9 (d, *J* = 244.2 Hz), 146.8, 145.9, 142.7, 138.5, 131.9, 129.7, 129.7, 122.3, 120.7, 117.4, 115.9, 115.7, 110.4, 109.2, 55.4, 31.2, 20.2.

1-(4-(4-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one²

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.43 – 7.39 (m, 2H), 7.39 – 7.35 (m, 2H), 7.32 – 7.31 (m, 2H), 7.09 – 7.03 (m, 1H), 7.01 – 6.96 (m, 1H), 6.57 (s, 1H), 2.47 (s, 3H), 2.23 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.6, 147.0, 145.8, 142.6, 141.1, 132.9, 131.9, 129.5, 129.5, 129.0, 129.0, 122.4, 120.9, 117.4, 110.4, 109.1, 88.6, 55.4, 31.3, 20.2.

1-(4-(3-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one⁷

¹**H NMR (500 MHz, DMSO-***d*₆) δ 10.76 (s, 1H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 7.7 Hz, 1H), 7.07 – 7.03 (m, 1H), 7.01 (m, 1H), 6.94 (s, 1H), 6.79 (d, *J* = 8.3 Hz, 1H), 6.53 (s, 1H), 5.93 (d, *J* = 8.3 Hz, 2H), 2.47 (s, 3H), 2.23 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.7, 147.9, 147.3, 145.9, 142.8, 136.0, 132.1, 122.2, 121.2, 120.6, 117.3, 110.7, 109.1, 108.5, 108.0, 101.6, 55.9, 31.1, 20.2.

1-(4-(2-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidin-3-yl)ethan-1-one⁷

¹**H NMR (500 MHz, DMSO-***d*₆) δ 10.89 (s, 1H), 7.48 (td, *J* = 7.8, 1.7 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.15 – 7.08 (m, 2H), 7.08 – 7.04 (m, 1H), 7.02 – 6.97 (m, 1H), 2.49 (s, 3H), 2.24 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.2, 145.8, 142.7, 132.0, 130.6 (d, *J* = 34.5 Hz), 130.4 (d, *J* = 15.5 Hz), 128.8, 128.7, 125.3 (d, *J* = 13.5 Hz), 122.4, 120.8, 117.5, 116.1 (d, *J* = 87.0 Hz), 109.5 (d, *J* = 13.5 Hz), 107.9, 51.0(d, *J* = 10.0 Hz), 31.2, 20.3.

Section S4. General procedure and spectral data of 2,3dihydroquinazolin-4(1*H*)-one

General procedure for 2,3-dihydroquinazolin-4(1H)-one

A mixture of anthranilamide (136 mg, 1 mmol), benzaldehyde (106 mg, 1 mmol), and [(4-SO₃H)BMIM]HSO₄ (31.6 mg, 0.1 mmol) was sonicated for 30 min at room temperature and the process of reaction monitored by TLC or GC-MS. After completion of the conversion, the reaction mixture was quenched with ethanol (10 mL). The crude product was filtered and washed with petroleum ether (2 x 5 mL) and then purified by recrystallization from ethanol to obtain the desired product.

Spectral data of 2,3-dihydroquinazolin-4(1*H*)-one 2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one⁸

White solid; **mp** 219- 223 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3462, 3306, 2900, 1659, 1615, 1509, 1483, 1443, 1387, 1298, 1247, 1159, 1028.

¹**H NMR (500 MHz, DMSO-***d*₆): δ 8.28 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 7.0 Hz, 2H), 7.40 - 7.33 (m, 3H), 7.24 (td, *J* = 7.5 Hz, *J*= 1.5 Hz, 1H), 7.10 (s, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.67 (t, *J* = 7.5 Hz, 1H), 5.75 (s, 1H).

¹³ C NMR (125 MHz, DMSO-*d*₆): δ 163.6, 147.8, 141.62, 133.3,128.3, 127.3, 126.8, 117.1, 114.9, 114.37, 66.5.

2-(4-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one9

White solid; **mp** 199- 201 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3447, 3305, 3188, 3062, 2950, 1914, 1659, 1607, 1481, 1431, 1381, 1288, 1161, 1089, 1010.

¹**H NMR (500 MHz, DMSO-***d*₆): δ 8.32 (s, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.24 (t, *J* = 7.2 Hz, 1H), 7.13 (s, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.67 (t, *J* = 7.5 Hz, 1H), 5.76 (s, 1H).

¹³ C NMR (125 MHz, DMSO-*d*₆): δ 163.3, 147.5, 140.5, 133.3, 132.8, 128.6, 128.1, 127.2, 117.1, 114.8, 114.3, 65.6.

2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one¹¹

White solid; mp 212- 214 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3338, 3189, 2782, 2582, 1627, 1499, 1426, 1292, 1244, 1152, 1037.

¹H NMR (500 MHz, DMSO- d_6): δ 9.49 (s, 1H), 8.08 (s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.24 – 7.19 (m, 1H), 6.93 (s, 1H), 6.73 (m, 3H), 6.66 (t, J = 7.5 Hz, 1H), 5.63 (s, 1H).

¹³ C NMR (125 MHz, DMSO-*d*₆): δ 163.7, 157.7, 148.1, 133.2, 131.6, 128.3, 127.3, 117.0, 114.9, 114.4, 66.6.

2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one⁹

White solid; mp 233-234 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3443, 2900, 1661, 1510, 1438, 1384, 1294, 1160, 908.

¹**H NMR (500 MHz, DMSO-***d*₆): δ 8.21 (s, 1H), 7.59 (s, 1H), 7.42 – 6.99 (m, 6H), 6.69 (s, *J* = 33.0 Hz, 2H), 5.69 (s, 1H), 2.28 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ 164.1, 148.4, 139.2, 138.2, 133.7, 129.3, 127.8, 127.3, 117.5, 115.5, 114.8, 66.8, 21.2.

2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one9

White solid; mp: 178- 179 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3426, 3298, 3180, 3025, 2925, 2831, 1657, 1610, 1505, 1434, 1383, 1298, 1247, 1167, 1118, 1028.

¹**H NMR (500 MHz, DMSO-***d*₆): δ 8.18 (s, 1H), 7.60 (d, *J* = 7.0 Hz, 1H), 7.41 (d, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 6.7 Hz, 1H), 7.01 (s, 1H), 6.94 (d, *J* = 7.5 Hz, 2H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.67 (t, *J* = 6.7 Hz, 1H), 5.70 (s, 1H), 3.74 (s, 3H).

¹³ C NMR (125 MHz, DMSO-*d6*): δ 163.7, 159.4, 148.0, 133.5, 133.2, 128.2, 127.3, 117.1, 115.0, 114.4, 113.6, 66.3, 55.2.

2- cyclohexyl-2,3- dihydroquinazolin-4(1H)-one¹⁰

White solid ; **mp**: 202-205°C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3366, 3169. 3060, 2927, 2851, 1647, 1499, 1434, 1389, 1309, 1254, 1151, 1027.

¹**H NMR (500 MHz, DMSO-***d*₆): δ 7.88 (s, 1H), 7.55 (d, *J* = 7.0 Hz, 1H), 7.20 (t, *J* = 7.0 Hz, 1H), 6.74 (d, *J* = 8 Hz, 1H), 6.60 (t, *J* = 7.0 Hz, 2H), 4.44 (s, 1H), 1.70-1.58 (m, 6H), 1.12 (d, *J* = 7 Hz, 5H).

¹³ C NMR (125 MHz, DMSO-*d*₆): δ 164.2, 148.8, 133.5, 127.7, 116.9, 115.3,

114.5, 69.0, 43.3, 27.5, 27.1, 26.4, 26.1, 26.0.

2-(4-fluorophenyl)-2,3-dihydroquinazolin-4(1H)-one¹⁰

White solid ; **mp** 200-203 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3452, 3299, 3179, 3061, 2930, 1658, 1610, 1505, 1436, 1386, 1294, 1234, 1157.

¹H-NMR (500 MHz, DMSO- d_6): δ 8.27 (s, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.53 (dd, J = 8.5, 6.0 Hz, 2H), 7.27 – 7.18 (m, 3H), 7.10 (s, 1H), 6.74 (d, J = 8.5 Hz, 1H), 6.68 (t, J = 7.5 Hz, 1H), 5.77 (s, 1H).

¹³ C NMR (125 MHz, DMSO-d₆): δ 164.0, 163.5 (d, J=242.6 Hz), 161.6 (d, J=242.6 Hz), 148.3, 138.3, 135.1, 133.8, 129.5 (d, J= 8.4 Hz), 127.8, 117.7, 115.6 (d, J=21.3 Hz), 115.4 (d, J=21.3 Hz), 114.9, 66.4.

2-(4-tert-butryl)phenyl-2-3-dihydroquinazolin-4(1H)-one¹²

White solid; **mp** 181- 183 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3271, 3192, 3068, 2959, 1915, 1655, 1612, 1515, 1442, 1387, 1295, 1158, 1021.

¹**H NMR (500 MHz, DMSO-** d_6): δ 8.22 (s, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.42 (s, 4H), 7.23 (t, J = 7.2 Hz, 1H), 7.06 (s, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.67 (t, J = 7.2 Hz, 1H), 5.71 (s, 1H), 1.27 (s, 9H).

¹³ C NMR (125 MHz, DMSO-*d*₆): δ 164.1, 151.5, 148.4, 139.1, 133.7, 127.8, 127.2, 125.6, 117.5, 115.4, 114.8, 66.9, 34.8, 31.6.

Section S5. ¹H, ¹³C NMR spectroscopy

NMR spectra of benzo[4,5]imidazo[1,2-a]pyrimidines

Figure 5. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 2-methyl-4-phenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate

Figure 6. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 4-(4methoxyphenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxylate

Figure 7. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 4-(4-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate

Figure 8. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 4-(4-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate

Figure 9. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 2-methyl-4-(4nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate

Figure 10. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 4-(3-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate

Figure 11. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 4-(2-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate

chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxylate

Figure 13. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 2-methyl-4-(2nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylate

Figure 14. ¹H (top) and ¹³C (bottom) NMR spetra of ethyl 4-(benzo[d][1,3]dioxol-5-yl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2a]pyrimidine-3-carboxylate

Figure 15. ¹H NMR spetru, of 1-(2-methyl-4-phenyl-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 16. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(2-methyl-4-(4-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 17. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(4-(2-chlorophenyl)-2methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 18. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(2-methyl-4-(2-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 19. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(4-(4-methoxyphenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 20. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(4-(4-fluorophenyl)-2methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 21. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(4-(4-chlorophenyl)-2methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 22. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(4-(3-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Figure 233. ¹H (top) and ¹³C (bottom) NMR spetra of 1-(4-(2-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one

Fig. 24 ¹H (top) and ¹³C (bottom) NMR spectra of 2-phenyl-2,3dihydroquinazolin-4(1*H*)-one

Fig. 25 ¹H (top) and ¹³C (bottom) NMR spectra of 2-(4-chlorophenyl)-2,3dihydroquinazolin-4(1*H*)-one

Fig. 26 ¹H (top) and ¹³C (bottom) NMR spectra of 2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1*H*)-one

dihydroquinazolin-4(1H)-one

Fig. 28 ¹H (top) and ¹³C (bottom) NMR spectra of 2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1*H*)-one

Fig. 29 ¹H (top) and ¹³C (bottom) NMR spectra of 2- cyclohexyl-2,3dihydroquinazolin-4(1*H*)-one

Fig. 30 ¹H (top) and ¹³C (bottom) NMR spectra of 2-(4-fluorophenyl)-2,3dihydroquinazolin-4(1*H*)-one

Section S6. References

- 1. P. H. Tran, A.-T. Duy Nguyen, H. T. Nguyen and T. N. Le, *RSC Adv.*, 2017, 7, 54399-54406.
- 2. J. Liu, M. Lei and L. Hu, Green Chem., 2012, 14, 840-846.
- 3. C. Yao, S. Lei, C. Wang, T. Li, C. Yu, X. Wang and S. Tu, J. *Heterocyclic Chem.*, 2009, **47**, 26-32.
- 4. T. Raj, H. Sharma, Mayank, A. Singh, T. Aree, N. Kaur, N. Singh and D. O. Jang, *ACS Sus. Chem. Eng.*, 2017, **5**, 1468-1475.
- 5. M. V. Reddy, A. V. S. Reddy and Y. T. Jeong, *Res. Chem. Intermed.*, 2016, **42**, 4893-4906.
- 6. M. Abedini, F. Shirini, M. Mousapour and O. Goli Jolodar, *Res. Chem. Intermed.*, 2016, **42**, 6221-6229.
- 7. H. R. Shaterian, N. Fahimi and K. Azizi, *Res. Chem. Intermed.*, 2013, **40**, 1879-1898.
- 8. J. Chen, W. Su, H. Wu, M. Liu and C. Jin, *Green Chem.*, 2007, **9**, 972-975.
- S. Nagarajan, T. M. Shaikh and E. Kandasamy, New J. Chem., 2015, 39, 9693-9699.
- 10. Y. Luo, Y. Wu, Y. Wang, H. Sun, Z. Xie, W. Zhang and Z. Gao, *RSC Adv.*, 2016, **6**, 66074-66077.
- 11. L. Shiri, H. Narimani and M. Kazemi, *Appl Organometal Chem.*, 2018, **32**, e3999.
- 12. M. Sharma, S. Pandey, K. Chauhan, D. Sharma, B. Kumar and P. M. Chauhan, *J. Org. Chem.*, 2012, **77**, 929-937.