## Supporting Information for

Introducing catalytic gasification into chemical activation for the conversion of natural coal into hierarchically porous carbons with broadened pore size for enhanced supercapacitive utilization

Tong Pei, Fei Sun\*, Jihui Gao, Lijie Wang, Xinxin Pi, Zhipeng Qie, and Guangbo Zhao School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China

\*Corresponding author. E-mail address: sunf@hit.edu.cn (F. Sun).

| Proximate analysis (wt-%) |                 |           |           | Ultimate analysis (wt-%, daf) |      |       |      |      |
|---------------------------|-----------------|-----------|-----------|-------------------------------|------|-------|------|------|
| M <sub>ad</sub>           | A <sub>ad</sub> | $FC_{ad}$ | $V_{daf}$ | С                             | Н    | $O^*$ | N    | S    |
| 11.79                     | 3.68            | 56.64     | 32.70     | 73.52                         | 6.55 | 18.51 | 0.91 | 0.51 |

**Table S1.** Proximate and ultimate analyses of Zhundong coal.

<sup>ad</sup> Air-dried basis, <sup>d</sup> dry basis, <sup>daf</sup> dry and ash-free basis, \* by difference.

Table S2. Ash composition analyses of Zhundong coal.

| Ash composition analysis (wt-%) |                                |                                |                  |       |      |                  |                   |                  |                 |          |
|---------------------------------|--------------------------------|--------------------------------|------------------|-------|------|------------------|-------------------|------------------|-----------------|----------|
| SiO <sub>2</sub>                | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | TiO <sub>2</sub> | CaO   | MgO  | K <sub>2</sub> O | Na <sub>2</sub> O | MnO <sub>2</sub> | SO <sub>3</sub> | $P_2O_5$ |
| 13.33                           | 10.71                          | 6.19                           | 0.47             | 37.75 | 9.98 | 0.62             | 9.78              | 0.16             | 6.52            | 0.19     |



**Fig. S1.** HRTEM images of Zhundong raw coal (a); MPC-500 (b) and HPC (c). All the HRTEM images demonstrate the mainly amorphous carbon nature.



**Fig. S2** (a) XRD patterns of prepared porous carbons; (b) Raman spectra of prepared porous carbons. Both XRD and Raman spectra suggest that the obtained porous carbons are mainly amorphous which is in agreement with the HRTEM results (Fig. S1). However, the differences between prepared porous carbons reveal that MPC-500 prepared under lower temperature (500) shows a relatively higher graphitization degree (higher 002 peak in XRD and G-to-D band ratio in Raman) that those of other samples. This is because high temperature treatments destroy the graphite-like crystal structure of raw coal and lead to the resulting MPC-950, HPC and MF-PC with lower graphitization degree



**Fig. S3** (a) CV curves of MPC-950 at various scan rates; (b) Galvanostatic chargedischarge curves of MPC-950 under different charge-discharge current densities.



**Fig. S4** Comparison of MF-PC and MPC-950 in three electrode system using 6 M KOH as electrolyte. Without the mineral component in the coal structure, MF-PC mainly have micropores. Owing to the larger BET surface area, MF-PC perform much better performance compared with MPC-950. However, it provides both poorer gravimetric capacity and rate capacity compared with HPC.

|                                      |                                    | _                       | Rate perfo   |              |             |  |
|--------------------------------------|------------------------------------|-------------------------|--------------|--------------|-------------|--|
| Sample                               | Electrolyte                        | System<br>voltage       | Capacitance  | Current      | Ref.        |  |
|                                      |                                    |                         | $(F g^{-1})$ | $(A g^{-1})$ |             |  |
| Nitrogen-doped                       | 2 M KOU                            | 0~1.8 vs.<br>SCE        | 260          | 1            | <b>S</b> 1  |  |
| Carbon Nanosheets                    | 2 WI KOII                          |                         | 177          | 20           |             |  |
| Nitrogen-doped                       | 2 М КОН                            | 0~1 vs. SCE             | 255          | 1            | S2          |  |
| Porous Carbon                        |                                    |                         | 192          | 10           | 52          |  |
| Hierarchically                       |                                    | -1~0 vs.                | 281          | 0.2          |             |  |
| Biomass Carbons                      | 1 M KOH                            | SCE                     | 125          | 4            | 83          |  |
| Nitrogen-doped                       | <u>ALKON</u>                       | -1.2~0.2 vs.            | 293          | 1            | S4          |  |
| Carbon                               | 6М КОН                             | SCE                     | 157          | 30           |             |  |
| Nitrogen-doped                       | 6 M KOH                            | -1~0 vs.<br>SCE         | 202          | 1            | S5          |  |
| porous nanofibers                    |                                    |                         | ~170         | 30           |             |  |
| Nitrogen-doped                       | <u>AUKOU</u>                       | -0.9~0 vs.              | 227          | 0.2          | S6          |  |
| Ordered Mesoporous                   | 6M KOH                             | SCE                     | 227          | 0.2          |             |  |
| Carbon                               | $I M H_2 SO_4$                     | 0~0.8 vs.<br>SCE        | 262          | 0.2          |             |  |
| Human hair-derived carbon flakes     | 6М КОН                             | -1~0 vs.<br>SCE         | 128          | 80           | S7          |  |
| Shape-controlled carbon nanosheets   | 1 M H <sub>2</sub> SO <sub>4</sub> | 0~1 vs.<br>Ag/AgCl      | 145          | 30           | S8          |  |
| Two-dimensional                      |                                    | -1~0 vs                 | 300          | 0.5          |             |  |
| Porous Carbon<br>Nanosheets          | 6М КОН                             | SCE                     | 246          | 100          | S9          |  |
| Yeast Cells Derived<br>Carbon 6M KOH |                                    | -1.2~0.2 vs.<br>Ag/AgCl | 175          | 100          | S10         |  |
| Hierarchical Porous                  | 0.000                              | -1~0 vs.                | 290          | 1            | S11         |  |
| Coal Tar Pitch                       |                                    | SCE                     | 250          | 10           |             |  |
| НРС                                  | 6M KOH                             | -1~0 vs.<br>SCE         | 308<br>202   | 1<br>100     | Our<br>work |  |

**Table S3.** Typical results of carbon materials for three-electrode test in literatures

 with aqueous electrolyte systems

**Table S4.** Typical results of carbon materials as cathode for lithium ion capacitors

 with organic electrolyte systems

| Sample                                 | Electrolyte           | System<br>voltage Rate performance  |                                                                                                                                                                                                                                                                    | Cycling<br>Stability                                  | Ref.        |
|----------------------------------------|-----------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|
| Nitrogen-<br>Doped<br>Porous<br>Carbon | 1 M LiPF <sub>6</sub> | 2.5-4.5 V<br>vs. Li/Li+             | $\begin{array}{c} 117 \ F \ g^{-1}(81.5 \ mAh \ g^{-1} \\ \ ) \ (0.1 \ A \ g^{-1}) \\ 60.8 \ F \ g^{-1}(42.3 \ mAh \\ g^{-1}) \ (30 \ A \ g^{-1}) \end{array}$                                                                                                     | 86% after<br>2000 cycles<br>(5 A g <sup>-1</sup> )    | S12         |
| Activated<br>Carbons                   | 1 M LiPF <sub>6</sub> | 3.0-4.6 V<br>vs. Li/Li <sup>+</sup> | $159 \text{ F g}^{-1}(110.6 \text{ mAh} \text{g}^{-1})$ $(0.1 \text{ A g}^{-1})$                                                                                                                                                                                   | ~82% after<br>1000 cycles<br>(0.1 A g <sup>-1</sup> ) | S13         |
| 3D Carbon<br>Nanofibers                | 1 M LiPF <sub>6</sub> | 2.0-4.5 V<br>vs. Li/Li <sup>+</sup> | 162 F g <sup>-1</sup> (113 mAh g <sup>-1</sup> )<br>(0.1 A g <sup>-1</sup> )<br>90.6 F g <sup>-1</sup> (63 mAh g <sup>-1</sup> )<br>(10 A g <sup>-1</sup> )                                                                                                        | 87% after<br>5000 cycles<br>(2 A g <sup>-1</sup> )    | S14         |
| LTO/<br>Graphene<br>hybrid             | 1 M LiPF <sub>6</sub> | 1-4 V vs.<br>Li/Li <sup>+</sup>     | $\begin{array}{c} 69 \ \mathrm{F} \ \mathrm{g}^{-1}(178 \ \mathrm{mAh} \ \mathrm{g}^{-1}) \\ (0.25 \ \mathrm{A} \ \mathrm{g}^{-1}) \\ 58 \ \mathrm{F} \ \mathrm{g}^{-1}(120 \ \mathrm{mAh} \ \mathrm{g}^{-1}) \\ (10 \ \mathrm{A} \ \mathrm{g}^{-1}) \end{array}$  | 95% after<br>1000 cycles<br>(5 A g <sup>-1</sup> )    | S15         |
| НРС                                    | 1 M LiPF <sub>6</sub> | 2.0~4.5 V<br>vs. Li/Li <sup>+</sup> | $\begin{array}{c} 183 \ \mathrm{F} \ \mathrm{g}^{-1}(127 \ \mathrm{mAh} \ \mathrm{g}^{-1}) \\ (0.25 \ \mathrm{A} \ \mathrm{g}^{-1}) \\ 112 \ \mathrm{F} \ \mathrm{g}^{-1}(78 \ \mathrm{mAh} \ \mathrm{g}^{-1}) \\ (10 \ \mathrm{A} \ \mathrm{g}^{-1}) \end{array}$ | 88% after<br>5000 cycles<br>(2 A g <sup>-1</sup> )    | Our<br>work |

## References

- S1. H. Peng, G. Ma, K. Sun, Z. Zhang, Q. Yang and Z. Lei, *Electrochim. Acta*, 2016, 190, 869.
- S2. G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao and Z. Lei, *Bioresour. Technol.*, 2015, **197**, 141.
- S3. H. Chen, D. Liu, Z. Shen, B. Bao, S. Zhao and L. Wu, *Electrochim. Acta*, 2015, 180, 247.
- S4. L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang and H. Fu, *Chem. Eur. J.* 2014, 20, 564.
- S5. L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, P. Chen, Z. Y. Wu, and S. H. Yu, ACS Nano, 2012, 6, 7092.
- S6. J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia and D. Zhao, *Adv. Funct. Mater.*, 2013, 23, 2322.
- S7. W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang and F. Yan, *Energy Environ. Sci.*, 2014, 7, 379.
- S8. W. Chen, R. B. Rakhi, M. N. Hedhili and H. N. Alshareef, J. Mater. Chem. A, 2014, 2, 5236.
- S9. X. Fan, C. Yu, J. Yang, Z. Ling, C. Hu, M. Zhang and J. S. Qiu, *Adv. Energy Mater.*, 2015, 5, 1401761.
- S10. H. Sun, W. He, C. Zong and L. Lu, ACS Appl. Mater. Interfaces., 2013, 5, 2261.
- S11. W. Geng, F. Ma, G. Wu, S. Song, J. Wan, D. Ma, *Electrochim. Acta*, 2016, 191, 861.
- S12. H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Yan, *Adv. Funct. Mater.* 2016,

**26**, 3082–3093.

- S13. A. Jain, V. Aravindan, S. Jayaraman, P. S. Kumar, R. Balasubramanian, S. Ramakrishna, S. Madhavi and M. P. Srinivasan, *Scientific Reports* 2013, 3, 3002.
- S14. Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L, Wan, H, Xia and Y. Yu, Adv. Energy Mater. 2017, 1701336.
- S15. L. Ye, Q. Liang, Y. Lei, X. Yu, C. Han, W. Shen, Z. Huang, F. Kang and Q. Yang, J. Power Sources, 2015, 282, 174-178.