Electronic Supplementary Information

Highly efficient redox reaction between potassium

permanganate and 3, 3', 5, 5'-tetramethylbenzidine for

application in hydrogen peroxide based colorimetric assay

Ying Sun,^{abc} Hui Liu,^e Xionghong Tan,^{abc} Zheng Li,^d Yanlin Du,^{abc} Aixian Zheng,*^{bc} Xiaolong Liu*^{bc} and Niancai Peng*^d

^{a.} College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China.

^{b.} Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^{c.} The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.

^{d.} State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

^{e.} Fifth People's Hospital, Ganzhou City, Jiangxi Province.

*Corresponding authors.

Tel: +86-591-83705927; E-mail addresses:

zax040500273@126.com; xiaoloong.liu@gmail.com; pnc@mail.xjtu.edu.cn.

Fig. S1 (A) The absorption spectra of $KMnO_4$ -TMB system performed in 10 mM PBS buffer with different pH values (2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 and 7); (B) the absorption spectra of the corresponding solution after addition of sulfuric acid.

Fig. S2 (A) The absorption spectra of KMnO₄ (20 μ M) after reaction with different concentrations of TMB (0, 25, 50, 100, 200, 250 and 500 μ M); (B) the absorption spectra of the corresponding solution after addition of sulfuric acid.

Fig. S3 The absorption spectra of 20 μ M KMnO₄ solution after addition of 200 μ M TMB for different times.

Fig. S4 (A) The absorption spectra of $KMnO_4$ -TMB system upon addition of different concentrations of GOx (varied from 1 µg mL⁻¹ to 50 µg mL⁻¹); (B) The absorption spectra of $KMnO_4$ -TMB system for glucose detection by using different concentrations of GOx (varied from 10 ng mL⁻¹ to 2.5 µg mL⁻¹).

Materials	Linear range (µM)	LOD (µM)	Reference
Fe ₃ O ₄ MNPs	50-1000	30	1
Graphene Oxide	1-20	1	2
Cu NCs	100-2000	100	3
Gold nanorods	100-1000	100	4
AuNPs	18-1100	4	5
Au@Pt core-shell nanorods	45-400	45	6
MoS ₂ Nanosheets	5-150	1.2	7
WSe ₂ Nanosheets	10-60	10	8
g-C ₃ N ₄ nanosheets	-	0.4	9
Dichlorofluorescein	80-1200	30	10
PdNPs/Cu-TCPP(Fe)	2-200	0.994	11
CoOOH nanoflakes	5.3-100	5.3	12
KMnO ₄ - TMB	10-400	4.55	This work

Table S1 Comparison of the present method with other methods for the detection of glucose.

References

- 1. H. Wei, E. Wang, Anal. Chem., 2008, 80, 2250-2254.
- 2. Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Adv. Mater., 2010, 22, 2206-2210.
- 3. L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, G. Xu, Anal. Chim. Acta., 2013, 762, 83-86.
- 4. X. Liu, S. Zhang, P. Tan, J. Zhou, Y. Huang, Z. Nie, S. Yao, Chem. Commun., 2013, 49, 1856-1858.
- 5. Y. Jv, B. Li, R. Cao, Chem. Commun., 2010, 46, 8017-8019.

6. J. Liu, X. Hu, S. Hou, T. Wen, W. Liu, X. Zhu, J. J. Yin, X. Wu, *Sensors and Actuators B*, 2012, **166**, 708-714.

7. T. Lin, L. Zhong, L. Guo, F. Fu, G. Chen, *Nanoscale*, 2014, **6**, 11856-11862.

8. T. M. Chen, X. J. Wu, J. X. Wang, G. W. Yang, *Nanoscale*, 2017, **9**, 11806-11813.

9. J. W. Liu, Y. Luo, Y. M. Wang, L. Y. Duan, J. H. Jiang, R. Q. Yu, ACS Appl. Mater. Interfaces, 2016, **8**, 33439-33445.

10. M. Li, L. Liu, Y. Shi, Y. Yang, H. Zheng, Y. Long, New J. Chem., 2017,41, 7578-7582

11. H. Chen, Q. Qiu, S. Sharif, S. Ying, Y. Wang, Y. Ying, *ACS Appl. Mater. Interfaces*, 2018, **10**, 24108-24115.

12. Y. M. Wang, J. W. Liu, J. H. Jiang, W. Zhong, Anal Bioanal Chem, 2017, 409, 225-4232.