Supporting information for

Mechanistic study of 1,1-dimethylhydrazine transformation over $\mathrm{Pt} / \mathrm{SiO}_{\mathbf{2}}$ catalyst

Andrei V. Smirnov ${ }^{*}$, Pavel A. Kots, Maksim A. Panteleyev, Irina I. Ivanova

Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, bld. 3, 11999, Moscow, Russia.
*Corresponding author: Tel.: +7(495)939-3570; E mail address: avsmirnov@phys.chem.msu.ru.

Table S1 Characteristic ions in the mass spectra of UDMH and major products of its transformation

Compound	Ions (m/z)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}-\mathrm{NH}_{2}$ (UDMH)	60, 42, 45, 59, 18, 28, 30, 15, 43, 44
O_{2}	32, 16
H_{2}	2
N_{2}	28, 14
CH_{4}	16, 15, 14, 13
NH_{3}	17, 16
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}=\mathrm{N}$ (DMDA)	15, 43, 28, 58, 27, 42
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ (DMA)	44, 45, 28, 42, 43
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}-\mathrm{N}=\mathrm{CH}_{2}(\mathrm{DMMH})$	72, 42, 71, 30, 57, 43
$\mathrm{CH}_{3} \mathrm{OH}$	31, 32, 29, 15
$\mathrm{CH}_{2} \mathrm{O}$	29, 30, 28
$\mathrm{NO}_{\text {x }}$	30, 44, 28, 4616,14 ,
CO_{2}	44, 28
$\mathrm{H}_{2} \mathrm{O}$	18, 17
HCN	27, 26

The ions used for identifying the corresponding compounds are marked bold.

Fig. S1. In situ FTIR spectra obtained after UDMH pulse over $\mathrm{Pt} / \mathrm{SiO}_{2}$ and pure SiO_{2} in $3 \% \mathrm{O}_{2} / \mathrm{He}$ flow, and after DMA pulse over $\mathrm{Pt} / \mathrm{SiO}_{2}$ at 533 K .

Shoulder at $2939 \mathrm{~cm}^{-1}$ corresponds to product of UDMH conversion - DMA, as verified by separate experiment. So, various species may contribute to observed picture in $\mathrm{C}-\mathrm{H}$ stretching region of the spectra.

Fig. S2. In situ FTIR spectra of $\mathrm{Pt} / \mathrm{SiO}_{2}$ sample exposed to DMA pulse in $3 \% \mathrm{O}_{2} / \mathrm{He}$ flow at 533 K .

Bands at 2190, 2147 and $2096 \mathrm{~cm}^{-1}$ due to $C \equiv N$ vibrations were found in spectra of DMA reaction over $\mathrm{Pt} / \mathrm{SiO}_{2}$. This data clearly shows that DMA is an important intermediate in UDMH transformation to surface deposits.

