Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting information for

Mechanistic study of 1,1-dimethylhydrazine transformation over Pt/SiO₂ catalyst

Andrei V. Smirnov*, Pavel A. Kots, Maksim A. Panteleyev, Irina I. Ivanova

Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, bld. 3, 11999, Moscow, Russia.

*Corresponding author: Tel.: +7(495)939-3570; E mail address: avsmirnov@phys.chem.msu.ru.

Table S1 Characteristic ions in the mass spectra of UDMH and major products of its transformation

Compound	lons (m/z)
(CH ₃) ₂ N-NH ₂ (UDMH)	60 , 42, 45 , 59, 18, 28, 30, 15, 43 , 44
O_2	32, 16
H ₂	2
N_2	28 , 14
CH ₄	16 , 15, 14, 13
NH_3	17, 16
$(CH_3)_2N=N$ (DMDA)	15, 43 , 28 , 58 , 27, 42
(CH ₃) ₂ NH (DMA)	44, 45, 28, 42, 43
(CH3)2N-N=CH2 (DMMH)	72 , 42, 71, 30, 57, 43
CH₃OH	31 , 32 , 29 , 15
CH ₂ O	29, 30, 28
NO_x	30, 44, 28, 46 16 , 14,
CO ₂	44 , 28
H ₂ O	18, 17
HCN	27, 26

The ions used for identifying the corresponding compounds are marked bold.

Fig. S1. In situ FTIR spectra obtained after UDMH pulse over Pt/SiO_2 and pure SiO_2 in $3\%O_2/He$ flow, and after DMA pulse over Pt/SiO_2 at 533 K.

Shoulder at 2939 cm⁻¹ corresponds to product of UDMH conversion – DMA, as verified by separate experiment. So, various species may contribute to observed picture in C-H stretching region of the spectra.

Fig. S2. In situ FTIR spectra of Pt/SiO_2 sample exposed to DMA pulse in $3\%O_2/He$ flow at 533 K.

Bands at 2190, 2147 and 2096 cm⁻¹ due to C≡N vibrations were found in spectra of DMA reaction over Pt/SiO₂. This data clearly shows that DMA is an important intermediate in UDMH transformation to surface deposits.