Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Enhanced properties of Pd/CeO2-nanorods modified with alkaline-earth metals

for catalytic oxidation of low-concentration methane

Tianyu Guo^{a,b,#}, Xiaorong Nie^{c,#}, Jianping Du^{b,c*}, Jinping Li^{b,d*}

^aCollege of Environmental Science and Engineering, Taiyuan University of

Technology, 030024 Shanxi, PR China

^bShanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, 030024

Shanxi, PR China

^c College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024 Shanxi, PR China

^d Research Institute of Special Chemicals, Taiyuan University of Technology, 030024

Shanxi, PR China

Fig.S1 Activities of the Pd/CeO2-ND catalysts with various Pd contents at different temperatures

 $Fig.S2 \; XRD \; patterns \; of \; the \; PdM/CeO_2-ND \; catalysts: (a) \; Pd/CeO_2-ND, (b) \; PdMg/CeO_2-ND, (c) \; and the transformation of transformation of the transformation of transformat$

PdCa/CeO2-ND, (d) PdSr/CeO2-ND and (e) PdBa/CeO2-ND

Fig.S3 XPS spectra of the PdM/CeO2-ND catalysts

Fig.S4 Methane oxidation rate as a function of temperature over the PdM/CeO2-ND catalysts

	Methane oxidation			Methane oxidation at 340 °C	
Catalyst	<i>T</i> _{10%} (°C)	<i>T</i> _{50%} (°C)	<i>T</i> _{90%} (°C)	CH ₄	Reaction rate
				conversion (%)	$(\times 10^{-6} \text{mol } g_{Pd}^{-1} \text{ s}^{-1})$
Pd/CeO ₂ -ND	260	328	444	58.52	211.25
PdMg/CeO ₂ -ND	260	336	>450	52.62	191.38
PdCa/CeO ₂ -ND	255	313	390	70.59	257.53
PdSr/CeO ₂ -ND	257	339	>450	51.05	185.96
PdBa/CeO ₂ -ND	303	428	>450	23.51	86.59

Table S1 Catalytic activities of the PdM/CeO₂-ND catalysts for methane oxidation

 $Fig.S5 \ H_2\ -TPR \ profiles \ of \ the \ PdM/CeO_2\ -ND \ catalysts: (a) \ Pd/CeO_2\ -ND, (b) \ PdMg/CeO_2\ -ND, (c)$

PdCa/CeO₂-ND, (d) PdSr/CeO₂-ND and (e) PdBa/CeO₂-ND

Fig.S6 Long-term stability of PdCa/CeO_2-ND and Pd/CeO_2-ND catalysts at 450 $^\circ C$ for 120 min.

GHSV: 16,000 mL g⁻¹h⁻¹.

Fig.S7 XRD patterns over the PaCa/CeO₂-ND catalysts with different molar ratio of

Pd/Ca

Fig.S8 XRD patterns over the PaCa/CeO₂-ND catalysts (n(Pd):n(Ca) = 2:1) with different calcination temperatures

Fig.S9 H₂-TPR profiles over the PaCa/CeO₂-ND catalysts (n(Pd):n(Ca) = 2:1) with

different calcination temperatures