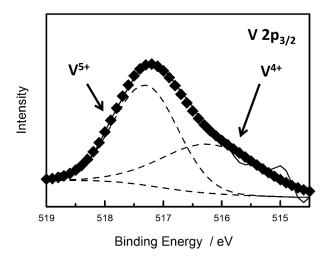
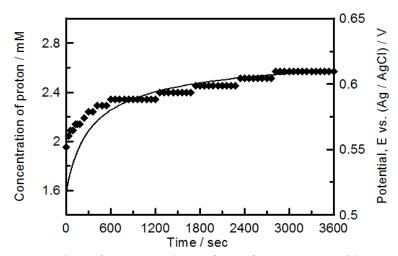
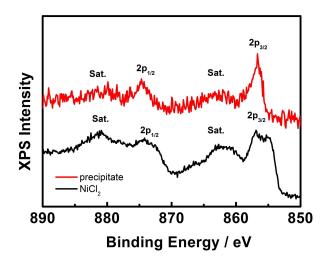
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019


Electroless Deposition of RuO₂-based Nanoparticles for Energy Conversion Applications

Jing-Mei Li*a,b, Chi-Chang Hu*a, Tzu-Ho Wua, and Yung-Jung Hsub


^aDepartment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.

^bDepartment of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.


*E-mail: cchu@che.nthu.edu.tw; maylinli_may@hotmail.com

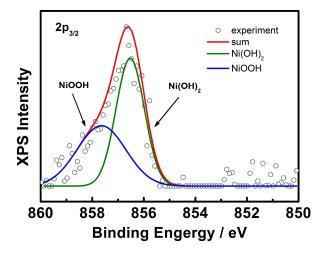

Figure S1. XPS spectra of VO_x electrodeposited at 0.4 V.

Figure S2 Concentration of proton at the surface of VO_x·*m*H₂O without potential bias and open-circuit potential record with time.

Figure S3. Ni XPS spectra of precursor NiCl₂ and the precipitate from the solution containing VOSO₄ and NiCl₂. In comparison with the precursor NiCl₂, the precipitate displayed different Ni 2p spectrum. This result demonstrates the oxidation of NiCl₂ to form the nickel oxyhydroxide, generalized the application of this unique deposition method.

Figure S4. Ni 2p_{3/2} XPS spectrum of the precipitate from the solution containing VOSO₄ and NiCl₂. This result demonstrates the oxidation of NiCl₂ to form the nickel oxyhydroxide, generalized the application of this unique deposition method.

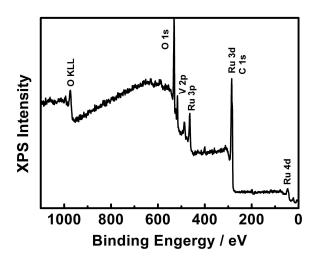
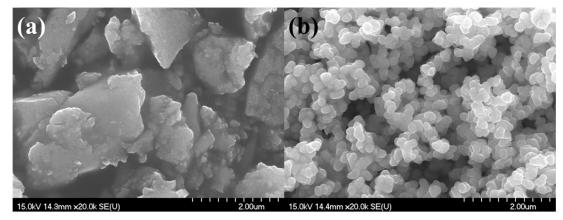



Figure S5 XPS survey spectrum of RuO₂-based nanoparticle suspensions

Figure S6 SEM images of (a) $RuO_2 \cdot nH_2O$ prepared by adjusting pH value of the 5 mM $RuCl_3 \cdot xH_2O + 5$ mM CH_3COONa solution to 12 and (b) $Ru_wV_yO_x \cdot pH_2O$.