Development of High Utilization Honeycomb-Like α -Ni(OH)₂ for Asymmetric Supercapacitor with Outstanding Capacitance

Shaojie Zhou,^a Shizhong Cui, ^a Wutao Wei,^a Weihua Chen*^b and Liwei Mi*^a

^a Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007 (P.R. China) ;E-mail: mlwzzu@163.com ^b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China. E-mail: chenweih@zzu.edu.cn

Figure S1. SEM image of pure α -Ni(OH)₂ power.

Figure S2. Rate performance of the sample pure α -Ni(OH)₂ power in three-electrode system.

Figure S3. Rate performance of the sample pure α -Ni(OH)₂ power in two-electrode system.

Journal Name

Figure S4. Cycle performance of the sample pure $\alpha\text{-Ni}(\text{OH})_2$ power in two-electrode system.

