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Derivation of the numerical model

The simulations were made by the dimensionless equations derived from the Rábai model of

the pH oscillators (R1)-(R3)1 and extended with (R4).

A− + H+ −−⇀↽−− HA (R1)

HA + B
H+

−−→ H+ + P (R2)

C + B + H+ −−→ Q (R3)

S− + H+ −−⇀↽−− HS (R4)

The corresponding rate equations are the following:

v1 = k1[A
−][H+]− k−1[HA] (1)

v2 = (k2[H
+] + k′2)[HA][B] (2)

v3 = k3[B][C][H+] (3)

v4 = k4[S
−][H+]− k−4[SH] (4)
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The state of Tank A and B can be described by the following set of equations:

d[A−]X
dt

= −k1[A−]X[H+]X + k−1[HA]X + k0([A
−]X0 − [A−]X) (5)

d[HA]X
dt

= k1[A
−]X[H+]X − k−1[HA]X − (k2[H

+]X + k′2)[HA]X[B]X

+ k0([HA]X0 − HA]X) (6)

d[H+]X
dt

= −k1[A−]X[H+]X + k−1[HA]X + (k2[H
+]X + k′2)[HA]X[B]X

− k3[B]X[C]X[H+]X − k4[S−]X[H+]X + k−4([S]tot − [S−]X)− k0[H+]X (7)

d[B]X
dt

= −(k2[H
+]X + k′2)[HA]X[B]X − k3[B]X[C]X[H+]X + k0([B]X0 − [B]X) (8)

d[C]X
dt

= −k3[B]X[C]X[H+]X + k0([C]X0 − [C]X) (9)

d[S−]X
dt

= −k4[S−]X[H+]X + k−4([S]tot − [S−]X)− k0[S−]X (10)

where [ ]X and [ ]X0 are concentrations in Tank A and B and in their feed. The feedback

of the gel content on the state of the tanks is neglected as the volume of the tanks is much

larger than that of the gel.

The dynamics of the gel content is governed by the following set of equations:

∂t[A
−] = −k1[A−][H+] + k−1[HA] +DA−∆[A−] (11)

∂t[HA] = k1[A
−][H+]− k−1[HA]− (k2[H

+] + k′2)[HA][B] +DHA∆[HA] (12)

∂t[H
+] = −k1[A−][H+] + k−1[HA] + (k2[H

+] + k′2)[HA][B]− k3[B][C][H+]

− k4[S−][H+] + k−4([S]tot − [S−]) +DH+∆[H+] (13)

∂t[B] = −(k2[H
+] + k′2)[HA][B]− k3[B][C][H+] +DB∆[B] (14)

∂t[C] = −k3[B][C][H+] +DC∆[C] (15)

∂t[S
−] = −k4[S−][H+] + k−4([S]tot − [S−]) +DS−∆[S−] (16)

with Dirichlet boundary conditions at the gel/tank surfaces, i.e.: [A−](x=0) = [A−]A and

[A−](x=w) = [A−]B. Here [ ] denotes the space and time dependent concentration in the gel.
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The dimensionless variables are de�ned as aX = [A−]X/[A]tot, ahX = [HA]X/[A]tot, hX =

[H+]X/[A]tot, bX = [B]X/[A]tot, cX = [C]X/[A]tot, aX0 = [A−]X0/[A]tot, ahX0 = [HA]X0/[A]tot,

hX0 = [H+]X0/[A]tot, bX0 = [B]X0/[A]tot, cX0 = [C]X0/[A]tot, sX0 = [S−]X0/[A]tot, a =

[A−]/[A]tot, ah = [HA]/[A]tot, h = [H+]/[A]tot, b = [B]/[A]tot, c = [C]/[A]tot, s = [S−]/[A]tot

and stot = [S]tot/[A]tot, where [A]tot = [A−]X0 + [HA]X0 and [S]tot = [S−]X0 + [HS]X0. The

dimensionless space (x̃, ỹ) and time (t̃) coordinates are scaled by
√
k0/D and k0, respectively.

Hereafter, dot, ∂t and ∆ denote the time derivatives and Laplacian, respectively.

The equations for the content of Tank A and B can be written as:

ȧX = −κ1aXhX + κ−1ahX + aX0 − aX (17)

ȧhX = κ1aXhX − κ−1ahX − (κ2hX + κ′2)ahXbX + ahX0 − ahX (18)

ḣX = −κ1aXhX + κ−1ahX + (κ2hX + κ′2)ahXbX − κ3bXcXhX

− κ4sXhX + κ−4(stot − sX)− hX (19)

ḃX = −(κ2hX + κ′2)ahXbX − κ3bXcXhX + bX0 − bX (20)

ċX = −κ3bXcXhX + cX0 − cX (21)

ṡX = −κ4sXhX + κ−4(stot − sX)− sX (22)

where aX0 + ahX0 = 1.
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The equations for the content of the gel can be written as:

∂ta = −κ1ah+ κ−1ah + ∆a (23)

∂tah = κ1ah− κ−1ah − (κ2h+ κ′2)ahb+ ∆ah (24)

∂th = −κ1ah+ κ−1ah + (κ2h+ κ′2)ahb− κ3bch

− κ4sh+ κ−4(stot − s) + 4∆h (25)

∂tb = −(κ2h+ κ′2)ahb− κ3bch+ ∆b (26)

∂tc = −κ3bch+ ∆c (27)

∂ts = −κ4sh+ κ−4(stot − s) + 0.01∆s (28)

The parameters are de�ned as: κ1 = k1[A]tot/k0, κ−1 = k−1/k0, κ2 = k2[A]2
tot
/k0, κ′2 =

k′2[A]tot/k0, κ3 = k3[A]2
tot
/k0, κ4 = k4[A]tot/k0, κ−4 = k−4/k0. The di�usion coe�cients are

set to be equal for all species (DA− = DHA = DB = DC = D) except for the hydrogen ions,

where DH+ = 4D,2 and for the polyacrylate, where DS− = 0.01D.

The value of κ1 and κ−1 are set to 5× 1010 and 5× 105 respectively, which are calculated

by using the following kinetic parameter values for the protonation of sul�te ions: k1 =

1010mol−1dm3s−1, k−1 = 103 s−1 and the typical set of experimental conditions, k0 = 2 ×

10−3 s−1, [A−]tot = 10mM. The values of κ2, κ′2, κ3, κ4 and κ−4 are set to 5 × 105, 5 × 101,

5× 103, 5× 1010, 5× 107 respectively.
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Dependence of the simulated values of the width (d̃) of the

middle band of the M state on the width of the gel (w̃)

Figure S1: Dependence of d̃ on w̃ at aA0 = 1, ahA0 = 0, aB0 = 0.4, ahB0 = 0.6, cX0 = 0,
bA0 = 1.5, bB0 = 0 (O), at aA0 = 1, ahA0 = 0, aB0 = 0.4, ahB0 = 0.6, cX0 = 0, bA0 = 1.8,
bB0 = 0 (O) and at aA0 = 1, ahA0 = 0, aB0 = 0.2, ahB0 = 0.8, cX0 = 0.3, bA0 = 1.5, bB0 = 0
(�). The solid lines show the results of �tted linear functions.
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Dependence of the limits of the domain of oscillations on

the rate of the oxidation steps

Figure S2: Dependence of the limits of the domain of oscillations on rate of the oxidation
steps. The rate constants are scaled by a factor r, as κ2 = r × 5 × 105, κ′2 = r × 5 × 101,
κ3 = r × 5× 103. The slope of the solid lines are −0.50(±0.01) and −0.48(±0.01).
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Simulated small amplitude oscillations

Figure S3: Simulated small amplitude oscillations at aA0 = 1, ahA0 = 0, aB0 = 0.4, ahB0 =
0.6, cX0 = 0.8, bA0 = 1.5, bB0 = 0, w = 2.76. The �gure shows only the middle part of gel.
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