Supporting Information

 Table 1. the Li-ion diffusion coefficient of the materials calculated from EIS spectra.

	ZCO-1	ZCO-2	ZCO-3
D _{Li} (EIS)(cm ² s ⁻¹)	2.72×10 ⁻¹⁶	9.56×10 ⁻¹⁵	1.96×10 ⁻¹⁵

 Table 2. Comparison of electrochemical properties of the ZnCo₂O₄ anodes in LIBs.

ZnCo ₂ O ₄ anodes	Cycling stability (mAh g ⁻¹)	Current density (mA g ⁻¹)	Cycle numbers	Ref.
Porous nanostructured	1243.2	100	80	1
Sliced orange-shaped	890	200	130	2
Hollow octahedron	880	200	160	3
Porous nanoribbon arrays	1422	200	80	4
Multimodal porous	919	200	100	5
Ultrathin mesoporous	810	1000	200	6
nanosheets				
Mesoporous	536	500	40	7
microspheres				
Nanotubes	1180	200	275	This
				work

Reference:

- 1. M. J. Du, D. He, Y. B. Lou and J. X. Chen, J. Energy Chem., 2017, 26, 673-680.
- 2. J. Deng, X. Yu, Y. He, B. Li, Q.-H. Yang and F. Kang, *Energy Storage Mater.*, 2017, 6, 61-69.
- 3. J. Deng, X. Yu, X. Qin, B. Liu, Y.-B. He, B. Li and F. Kang, Energy Storage Mater., 2018, 11, 184-190.
- Z. Zhang, X. Zhang, Y. Feng, X. Wang, Q. Sun, D. Yu, W. Tong, X. Zhao and X. Liu, *Electrochim. Acta*, 2018, 260, 823-829.
- 5. S. Hao, B. Zhang, S. Ball, M. Copley, Z. Xu, M. Srinivasan, K. Zhou, S. Mhaisalkar and Y. Huang, *J. Power Sources*, 2015, 294, 112-119.
- 6. M. M. Zhen, L. Liu and C. Wang, *Micropor. Mesopor. Mat.* 2017, 246, 130-136.
- L. L. Hu, B. H. Qu, C. C. Li, Y. J. Chen, L. Mei, D. N. Lei, L. B. Chen, Q. H. Li and T. H. Wang, *J. Mater. Chem. A*, 2013, 1, 5596-5602.

Fig. S1 XPS spectra for the nanotube ZnCo₂O₄ samples.

Fig. S2 TG curve for the precursor fibers of ZCO-2 in flowing air