# **Supporting Information**

## Construction of K+ responsive surface on SEBS to reduce the

## hemolysis of preserved erythrocyte

Xingkun Luan,<sup>†,‡</sup>Haozheng Wang,<sup>†</sup> Zehong Xiang,<sup>‡</sup> Jiruo Zhao, <sup>†</sup> Ying Feng, <sup>†,</sup> \* Qiang Shi,<sup>‡,\*</sup> Shing-Chung Wong,<sup>⊥</sup> Jinghua Yin <sup>†</sup>

- <sup>†</sup> Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization/Key Laboratory of Rubber-Plastics (QUST), Ministry of Education/Shandong, Qingdao 266042, P. R. China
- <sup>‡</sup> State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- <sup>L</sup>Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325-3903, USA

### **Content:**

- 1. Synthesis pathway for PCL-A
- 2. FTIR spectra of PCL-A, BCAm and electrospun PCL-A/BCAm fiber

1. Synthesis pathway for PCL-A



Figure S1. Synthesis pathway for PCL-A

#### 2. FTIR spectra of PCL-A, BCAm and electrospun PCL-A/BCAm fiber

Bruker FTIR spectrometer Vertex 70 equipped with an attenuated total reflection (ATR) unit (ATR crystal 45°) was used to characterize PCL-A, BCAm and electrospun PCL-A/BCAm fiber at a resolution of 4 cm<sup>-1</sup> for 32 scans. As shown in Figure S2, the peak at 1729 cm<sup>-1</sup> is attributed to the -C=O absorption of the acrylate group on PCL-A, BCAm shows the peaks at 1664 cm<sup>-1</sup> and 1607 cm<sup>-1</sup>, which are assigned to the -C=O absorption and the -N-H stretching vibration peaks, respectively. These peaks can be observed in FTIR spectra of PCL-A/BCAm fibers.



Figure S2. FTIR of PCL-A, BCAm and electrospun PCL-A/BCAm