Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Monolithic zirconia aerogel from polyacetylacetonatozirconium precursor and ammonia hydroxide gel initiator: formation mechanism, mechanical strength and thermal properties.

Benxue Liu a*, Min Gao a, Xiaochan Liu a, Yongshuai Xie b, Xibin Yi a*, Luyi Zhu b, Xinqiang Wang b, Xiaodong Shen a,c

^a Qilu University of Technology (Shandong Academy of Science), Advanced Materials
Institute, Shandong Provincial Key Laboratory for Special Silicone-Containing
Materials, Jinan 250014, P. R. China.

- ^b State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
- ^c College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.

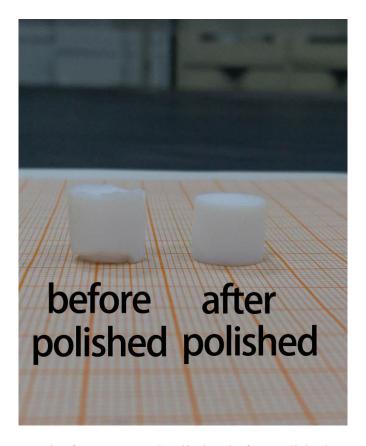


Figure S1. Photograph of ZrO₂ aerogel cylinders before polished on sand paper with obvious meniscus and after polished generating flat surfaces.

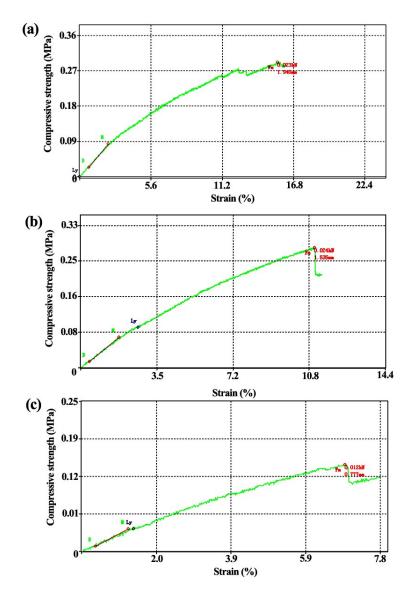


Figure S2. Stress-strain curves of (a) NH_3 -1, (b) NH_3 -2 and (c) NH_3 -3 ZrO_2 aerogel.



Figure S3. TG curves of the NH_3 -1, NH_3 -2 and NH_3 -3 ZrO_2 aerogel.