Study of Catalytic ozonation for Tetracycline hydrochloride

Degradation in water by silicate ore supported Co₃O₄

Lisha Luo^{abc}, Donglei Zou^a, Dongwei Lu^{c*}, Fengli Yu^b,

Bingjing Xin^b, Jun Ma^c,

^aJilin University, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jiefang Road 2519, Jilin, 130000, China

^b.College of Resources and Environmental Engineering, Jilin Institute of Chemical Technology,

Jilin132022, China

^c.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of

Technology, Harbin 150090, PR China

Corresponding Author: lvdongwei@hit.edu.cn

Name	Tetracycline hydrochloride (TCH)				
Formula	$C_{22}H_{24}N_2O_8{\cdot}HCl$	OH O OH O O OH / NH ₂			
FW (g mol ⁻¹)	480.9	9 10 11 11a 12 12a 1			
$\lambda_{max}(nm)$	365	B C B A • HCl			
Structure		7 H_3C OH $N(CH_3)_2$ OH			

Table S1 Physicochemical property of tetracycline hydrochloride

Table S2 Content of Co element in CoSO and concentration of leached cobalt ions

Impregnation concentration	Content of Co element in	Concentration of leached cobalt
	CoSO	ions
0.3 mol L ⁻¹	6.3%	$0.009 \text{ mg } \mathrm{L}^{-1}$
0.5 mol L ⁻¹	11.2%	$0.014 \text{ mg } \mathrm{L}^{-1}$
1.0 mol L ⁻¹	24.3%	$0.025 \text{ mg } \mathrm{L}^{-1}$
1.5 mol L ⁻¹	30.5%	$0.030 \text{ mg } \mathrm{L}^{-1}$

Table S3 First-order rate constants for TCH and TOC removal among different processes.

Desser	ТСН		TOC	
Plocess —	k (min ⁻¹)	R ²	k (min ⁻¹)	R ²
CoSO/O ₃	0.110 ± 0.006	0.993	0.014 ± 0.001	0.992
SO/O ₂	0.012 ± 0.001	0.986	0.002 ± 0.0001	0.997
O ₃	0.024 ± 0.001	0.996	0.004 ± 0.0003	0.986
CoSO/O ₂	0.012 ± 0.001	0.989	0.002 ± 0.0002	0.997
SO/O ₃	0.048 ± 0.002	0.998	0.007 ± 0.0004	0.971

The uncertainty of rate constants corresponds to 95% confidence level. The total degree of freedom was 9.

Fig. S1. Schematic of experimental apparatus for ozonation. (1, dry air; 2, gas flowmeter; 3, ozone generator; 4, microporous titanium diffuser; 5, ozonation reactor; 6, sampling point; 7, magnetic stirrer; 8, KI trap; 9, constant temperature water bath; 10, cryostat).

Fig. S2 Ozone concentration in ultra-pure water under experimental conditions

Fig. S3. Effect of impregnation concentration on ozonation of TCH with CoSO.

pH = 7.0; initial TCH = 30 mg L^{-1} ; T = 20 °C; gaseous ozone = 1.0 mg L^{-1} ; catalyst = 1.0 g L^{-1} .

Fig. S4 Effect of calcination temperature on ozonation of TCH with CoSO. pH = 7.0; initial TCH = 30 mg L^{-1} ; T = 20 °C; gaseous ozone = 1.0 mg L^{-1} ; catalyst = 1.0 g L^{-1} .

Fig S5. Effect of calcination time on ozonation of TCH with CoSO. pH = 7.0; initial TCH = 30 mg L^{-1} ; T = 20 °C; gaseous ozone = 1.0 mg L^{-1} ; catalyst = 1.0 g L^{-1} .

Fig. S6 SEM images of the samples SO (a) and CoSO (b).

Fig. S7 EDS spectrum of (a) SO, (b) CoSO, and (c)-(f) elemental mapping of the CoSO catalyst .

Fig. S8. Zeta potential of CoSO.

Fig. S9 Influence of TBA on catalytic ozonation of TCH. Initial pH = 7.0; initial TCH = 30 mg L^{-1} ; T = 20 °C; gaseous ozone = 1.0 mg L^{-1} ; catalyst = 1.0 g L^{-1} .

Fig. S10. Degradation efficiency of TCH in the presence of hydrogen peroxide. Initial pH = 7.0; initial TCH = 30 mg L⁻¹; T = 20 °C; gaseous ozone = 1.0 mg L⁻¹; catalyst = 1.0 g L⁻¹. $H_2O_2 = 10$ µmol L⁻¹