Supplementary Materials for

Pb^{II}-Catalyzed Transformation of Aromatic Nitriles to Heptanitrogen Anion via Sodium Azide: A Combined Experimental and Theoretical Study

Rong-Yi Huang,^{*,a} Chao Zhang,^a Da Yan,^a Zhi Xiong,^a Heng Xu,^{*,a} and Xiao-Ming Ren^{*,b}

 ^a Anhui Key Laboratory of Functional Coordination Compounds and School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, P.
 R. China
 ^b State Key Laboratory of Materials-Oriented Chemical Engineering and College of

^o State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China

Supporting Information Contents

- 1. Thermal decomposition behaviors of MOF-N7 and Pb-FBA
- Table S1: Selected bond lengths (Å) and angles (°) for MOF-N₇.
- **Table S2**: Selected bond lengths (Å) and angles (°) for α -Pb(N₃)₂.
- Table S3: Selected bond lengths (Å) and angles (°) for Pb-FBA.
- **Table S4**: The calculated interaction energies corrected with BSSE and ZPE, ΔE_{int} for the associations **Pb**...**N**₃ and **Pb**...**4**-**FBN** (kcal·mol⁻¹).
- Table S5: Topological parameters at bond critical points of the Pb-N and N-N bonds in MOF-N7'.
- Fig. S1. The calculated structures for the Pb…N₃ and Pb…4-FBN associations.
- Fig. S2. The structures of the representative fragments $N_7^{3-}-C_{2h}$, $N_7^{3-}-C_{2\nu}$ and MOF- N_7'
- Fig. S3. The XPRD patterns obtained for MOF-N₇.
- Fig. S4. (a) The coordination environment of the Pb²⁺ ions in MOF-N₇ with the ellipsoids drawn at the 30% probability level. Distorted water molecules and all hydrogen atoms were omitted for clarity. (b) The 1D chain constructed via the C₂O₄²⁻ anions and [Pb₆O₂]⁸⁺ cationic clusters along the *a*-axis. (c) The 1D chain constructed via the CHDA²⁻ anions and Pb²⁺ ions along the *a*-axis. (d) The 2D metal-organic layer parallel to the *ab* plane in MOF-N₇. (e) The 3D open framework constructed from the 2D layers and N₇ anionic pillars of MOF-N₇.
- Fig. S5. The FT–IR spectrum obtained of MOF-N₇.
- Fig. S6. The coordination environment of the Pb^{2+} ions in α -Pb(N₃)₂ with the ellipsoids drawn at the 30% probability level.
- Fig. S7. The coordination environment of the Pb²⁺ ion in Pb-FBA with the ellipsoids drawn at the 30% probability level. Distorted water molecules and all hydrogen atoms were omitted for clarity.
- Fig. S8. The ELF- π isosurfaces (value = 0.70) of N₇³⁻-C_{2ν} (top) and the N₇³⁻ polynitrogen fragment in MOF-N₇' (bottom).

Fig. S9. The TGA plot obtained for Pb-FBA at a heating rate of $10^{\circ}C \cdot min^{-1}$ under a flow of N₂.

1. Thermal decomposition behaviour of MOF-N₇ and Pb-FBA

To test the robustness of MOF-N7 and Pb-FBA, thermogravimetric analyses (TGA) were obtained via heating the crystalline samples in the temperature range of 20 to 800 °C under a N₂ atmosphere (Figures 7 and S9). For MOF-N₇, the TGA results show that the **MOF-N**₇ framework was stable up to approximately 369 °C and then started to abruptly decompose. The first mass loss of the four guest water molecules and one hydronium ion per formula unit occurred in range of 20 to 369 °C with a 3.5% mass loss (calc. 3.4%). The second major mass loss of the four CHDA²⁻ ligands, one ox²⁻ ligand and two O²⁻ anions, occurred in range of 369 to 430 °C with a 31.5% mass loss (calc. 30.1%). The third minor weight loss of the N_7^{3-} polynitrogen occurred with a 3.8% mass loss (calc. 3.7%). The percentage remaining was 61.0%, meaning that the final product was metallic lead (calc. 62.6%). In addition, the DSC curve presents three endothermic peaks at 381, 406 and 419 °C in range of 369 to 430 °C, which can be assigned to the removal of the four CHDA²⁻ ligands, one ox²⁻ ligand and two O²⁻ anions, respectively. Interestingly, a larger exothermic peak was observed at 607 °C in range of 430 to 800 °C, accompanied an exothermic enthalpy change of 8.61 kJ/g, which was due to the decomposition of the N_7^{3-} polynitrogen. **Pb-FBA** lost two guest water molecules from 20 to 400 °C, accompanied by a mass loss of 4.4% (calc.4.8%). After 400 °C, Pb-FBA started to abruptly decompose, which corresponds to the decomposition of FBA- and O²⁻ anions. Up until 800 °C, Pb-FBA did not decompose completely.

Table S1:

Selected bond lengths (Å) and angles (°) for $\textbf{MOF-N}_{7}.$

	8 - () -		
Pb(1)–O(1)	2.314(7)	Pb(1)–O(2)	2.592(10)
Pb(1)-O(1)#1	2.314(7)	Pb(1)-O(2)#2	2.592(10)
Pb(1)-O(4)	3.029(12)	Pb(1)–N(1)	2.600(2)
Pb(1)-O(4)#2	3.029(12)	Pb(2)–O(3)	2.642(12)
Pb(2)-O(5)#3	2.562(12)	Pb(2)–O(6)#3	2.934(12)
Pb(2)-O(3)#4	2.642(12)	Pb(2)–O(6)#5	2.588(12)
Pb(2)-O(5)#6	2.562(12)	Pb(2)–O(6)#6	2.934(12)
Pb(2)–O(6)#7	2.588(12)	Pb(3)–O(1)	2.278(7)
Pb(3)–O(2)	2.731(11)	Pb(3)–O(3)	2.638(12)
Pb(3)-O(4)#4	2.438(11)	Pb(3)–N(1)#4	2.910(8)
Pb(3)–O(5)#6	2.829(12)	Pb(3)–O(3)#4	2.913(11)
N(1)–N(2)	1.198(31)	N(3)–N(4)	1.191(30)
N(2)–N(3)	1.261(39)		
N(1)-N(2)-N(3)	165.2(3)	N(3)-N(4)-N(3)#8	180.0(2)
N(2)-N(3)-N(4)	165.9(3)		
O(1)–Pb(1)–O(2)	76.8(3)	O(1)–Pb(1)–O(4)	66.8(3)
O(1)-Pb(1)-O(1)#1	75.1(3)	O(1)-Pb(1)-O(2)#2	114.4(3)
O(2)–Pb(1)–O(4)	75.9(3)	O(2)–Pb(1)–N(1)	146.7(3)
O(2)-Pb(1)-O(2)#2	63.5(4)	O(2)-Pb(1)-O(4)#2	136.8(3)
O(4)-Pb(1)-O(1)#1	137.0(3)	O(4)-Pb(1)-O(2)#2	136.8(3)
N(1)-Pb(1)-O(1)#1	75.5(4)	N(1)-Pb(1)-O(2)#2	146.7(3)
O(1)#1-Pb(1)-O(2)#2	76.8(3)	O(1)#1-Pb(1)-O(4)#2	66.8(3)
O(3)-Pb(2)-O(5)#3	68.7(4)	O(3)–Pb(2)–O(6)#3	112.8(4)
O(3)-Pb(2)-O(6)#6	90.0(3)	O(3)-Pb(2)-O(3)#4	66.3(4)
O(3)-Pb(2)-O(6)#7	91.2(4)	O(5)#3-Pb(2)-O(6)#3	44.2(4)
O(5)#3–Pb(2)–O(6)#6	152.9(4)	O(5)#3-Pb(2)-O(3)#4	74.9(4)
O(5)#3–Pb(2)–O(6)#7	95.2(4)	O(6)#3-Pb(2)-O(5)#6	152.9(4)
O(6)#3–Pb(2)–O(3)#4	90.0(3)	O(6)#3-Pb(2)-O(6)#5	67.6(4)
O(5)#6–Pb(2)–O(6)#6	44.2(4)	O(5)#6–Pb(2)–O(3)#4	68.7(4)
O(5)#6–Pb(2)–O(6)#7	109.2(4)	O(6)#6-Pb(2)-O(3)#4	112.8(4)
O(6)#6–Pb(2)–O(6)#7	67.6(4)	O(3)#4–Pb(2)–O(6)#5	91.2(4)

O(6)#5–Pb(2)–O(6)#7	111.4(4)	O(1)–Pb(3)–O(2)	74.6(2)
O(1)-Pb(3)-O(5)#6	133.4(3)	O(1)-Pb(3)-O(3)#4	73.4(3)
O(1)-Pb(3)-N(1)#4	70.0(5)	O(2)-Pb(3)-O(3)#4	134.2(3)
O(2)-Pb(3)-O(5)#6	130.8(3)	O(3)-Pb(3)-O(4)#4	110.2(4)
O(2)-Pb(3)-N(1)#4	75.2(5)	O(5)#6–Pb(3)–O(3)#4	61.5(3)
O(3)-Pb(3)-O(3)#4	62.5(3)	O(5)#3-Pb(2)-O(6)#5	109.2(4)
O(5)#6–Pb(3)–N(1)#4	144.6(5)	O(6)#3-Pb(2)-O(6)#6	153.2(3)
O(3)#4–Pb(3)–N(1)#4	121.6(5)	O(6)#3-Pb(2)-O(6)#7	96.9(4)
O(1)-Pb(1)-N(1)	75.5(4)	O(5)#6–Pb(2)–O(6)#5	95.2(4)
O(1)-Pb(1)-O(4)#2	137.0(3)	O(6)#6–Pb(2)–O(6)#5	96.9(4)
O(2)-Pb(1)-O(1)#1	114.4(3)	O(3)#4–Pb(2)–O(6)#7	157.4(4)
O(4)–Pb(1)–N(1)	76.4(3)	O(1)-Pb(3)-O(3)	79.2(3)
O(4)-Pb(1)-O(4)#2	135.1(3)	O(1)-Pb(3)-O(4)#4	78.9(3)
N(1)-Pb(1)-O(4)#2	76.4(3)	O(2)–Pb(3)–O(3)	80.0(3)
O(2)#2–Pb(1)–O(4)#2	75.9(3)	O(2)–Pb(3)–O(4)#4	149.2(4)
O(3)-Pb(2)-O(5)#6	74.9(4)	O(3)–Pb(3)–O(5)#6	70.7(4)
O(3)-Pb(2)-O(6)#5	157.4(4)	O(3)-Pb(3)-N(1)#4	144.4(5)
O(5)#3-Pb(2)-O(5)#6	136.2(4)	O(5)#6-Pb(3)-O(4)#4	79.4(4)
O(4)#4–Pb(3)–N(1)#4	81.3(6)	O(3)#4–Pb(3)–O(4)#4	47.8(4)

Symmetry codes: #1 -x + 1, -y + 1, -z + 1; #2 x, -y + 1, z; #3 x + 1, y, z; #4 -x +1, y, -z + 1; #5 -x + 1/2, -y + 3/2, -z + 1; #6 -x, y, -z + 1; #7 x + 1/2, -y + 3/2, z; #8 -x +2, y, -z + 2.

Table S2:

Selected bond lengths (Å) and angles (°) for α -Pb(N₃)₂.

8 ()	ε	(0)=	
Pb(1)–N(4)	2.711(8)	Pb(1)–N(7)	2.632(7)
Pb(1)–N(6)#1	2.796(8)	Pb(1)–N(6)#2	2.695(8)
Pb(1)–N(10)	2.604(8)	Pb(1)–N(1)#1	2.896(4)
Pb(1)–N(7)#3	2.613(8)	Pb(1)-N(10)#3	2.753(8)
Pb(2)–N(3)	2.651(11)	Pb(2)–N(4)	2.578(8)
Pb(2)-N(9)#4	2.890(8)	Pb(2)–N(9)#2	2.890(8)
Pb(2)–N(1)#1	2.629(10)	Pb(2)–N(9)#5	2.833(8)
Pb(2)–N(9)#6	2.833(8)	Pb(2)-N(4)#7	2.578(8)
N(4)-Pb(1)-N(7)	78.3(2)	N(4)-Pb(1)-N(10)	78.5(2)
N(4)-Pb(1)-N(6)#1	120.2(2)	N(4)-Pb(1)-N(6)#2	84.3(2)
N(4)-Pb(1)-N(10)#3	134.5(2)	N(7)-Pb(1)-N(10)	68.7(3)
N(7)-Pb(1)-N(6)#1	135.1(2)	N(7)-Pb(1)-N(6)#2	74.7(2)
N(7)-Pb(1)-N(10)#3	126.9(2)	N(10)-Pb(1)-N(1)#1	79.5(3)
N(10)-Pb(1)-N(6)#2	141.9(2)	N(10)-Pb(1)-N(7)#3	99.3(2)
N(1)#1-Pb(1)-N(6)#1	85.7(2)	N(1)#1-Pb(1)-N(6)#2	124.4(3)
N(1)#1-Pb(1)-N(10)#3	69.8(3)	N(6)#1-Pb(1)-N(6)#2	67.9(2)
N(6)#1-Pb(1)-N(10)#3	71.5(2)	N(6)#2-Pb(1)-N(7)#3	83.2(2)
N(7)#3-Pb(1)-N(10)#3	66.7(2)	N(3)–Pb(2)–N(4)	73.6(2)
N(3)-Pb(2)-N(9)#5	136.65(18)	N(3)-Pb(2)-N(9)#4	68.8(2)
N(3)-Pb(2)-N(9)#6	136.65(18)	N(3)-Pb(2)-N(4)#7	73.6(2)
N(4)-Pb(2)-N(9)#5	78.9(2)	N(4)-Pb(2)-N(9)#4	141.5(2)
N(4)-Pb(2)-N(9)#6	144.6(2)	N(4)-Pb(2)-N(4)#7	99.1(3)
N(1)#1-Pb(2)-N(9)#4	138.44(17)	N(1)#1-Pb(2)-N(9)#2	138.44(17)
N(1)#1-Pb(2)-N(4)#7	73.9(2)	N(9)#5-Pb(2)-N(9)#4	124.8(2)
N(9)#5-Pb(2)-N(9)#6	82.9(2)	N(9)#5-Pb(2)-N(4)#7	144.6(2)
N(9)#4-Pb(2)-N(9)#6	73.2(2)	N(9)#4-Pb(2)-N(4)#7	78.2(2)
N(9)#2-Pb(2)-N(4)#7	141.5(2)	N(9)#6-Pb(2)-N(4)#7	78.9(2)
N(4)-Pb(1)-N(1)#1	67.7(3)	N(10)-Pb(1)-N(6)#1	149.4(2)
N(4)-Pb(1)-N(7)#3	156.1(2)	N(10)-Pb(1)-N(10)#3	78.3(3)
N(7)-Pb(1)-N(1)#1	137.3(2)	N(1)#1-Pb(1)-N(7)#3	135.8(2)
N(7)-Pb(1)-N(7)#3	78.7(2)	N(6)#1-Pb(1)-N(7)#3	73.2(2)

N(6)#2-Pb(1)-N(10)#3	134.8(2)	N(1)#1–Pb(2)– N(9)#5	71.7(2)
N(3)-Pb(2)-N(1)#1	128.9(3)	N(1)#1-Pb(2)-N(9)#6	71.7(2)
N(3)-Pb(2)-N(9)#2	68.8(2)	N(9)#5-Pb(2)-N(9)#2	73.2(2)
N(4)-Pb(2)-N(1)#1	73.9(2)	N(9)#4-Pb(2)-N(9)#2	80.9(2)
N(4)-Pb(2)-N(9)#2	78.2(2)	N(9)#2-Pb(2)-N(9)#6	124.8(2)

Symmetry codes: #1 x - 1, y, z; #2 -x + 1, -y + 1, -z + 1; #3 x - 1/2, y, -z + 3/2; #4 -x + 1, -y + 1/2, -z + 1; #5 -x + 1/2, -y + 1, z - 1/2; #6 -x + 1/2, y + 1/2, z - 1/2; #7 x, -y + 3/2, z.

Table S3:

Selected bond lengths (Å) and angles (°) for $\mbox{Pb-FBA}.$

_	, , ,		
Pb(1)-O(1)	2.293(3)	Pb(2)-O(3)#2	2.806(4)
Pb(1)-O(2)#1	2.554(5)	Pb(2)–O(1)	2.257(3)
Pb(1)–O(5)	2.435(5)	Pb(2)-O(1)#1	2.302(3)
Pb(1)-O(2)#3	2.800(4)	Pb(2)–O(3)	2.558(4)
Pb(1)-O(1)#1	2.307(3)	Pb(2)–O(4)	2.490(5)
O(1)-Pb(1)-O(5)	80.29(16)	O(1)-Pb(2)-O(3)#2	75.82(12)
O(1)–Pb(1)–O(2)#1	80.34(13)	O(3)–Pb(2)–O(3)#2	124.42(14)
O(5)-Pb(1)-O(2)#1	160.62(17)	O(4)-Pb(2)-O(1)#1	77.21(14)
O(1)#1-Pb(1)-O(2)#1	82.64(13)	O(1)–Pb(2)–O(3)	90.43(14)
O(1)-Pb(1)-O(2)#3	142.79(13)	O(1)–Pb(2)–O(1)#1	74.92(12)
O(5)-Pb(1)-O(2)#3	80.69(18)	O(3)-Pb(2)-O(1)#1	80.34(13)
O(2)#3–Pb(1)–O(1)#1	74.98(12)	O(3)#2–Pb(2)–O(1)#1	141.43(12)
O(1)-Pb(1)-O(1)#1	74.13(11)	O(1)– Pb(2)–O(4)	89.32(14)
O(5)–Pb(1)–O(1)#1	92.21(14)	O(3)–Pb(2)–O(4)	156.80(16)
O(2)#3–Pb(1)– O(2)#1	115.55(13)	O(4)-Pb(2)-O(3)#2	77.88(16)

Symmetry codes: #1 -x + 5/4, y - 3/4, z + 1/4; #2 x + 3/4, -y + 5/4, z - 1/4; #3 -x + 1/2, -y + 2, z + 1/2.

Table S4:

The calculated interaction energies corrected with BSSE and ZPE, ΔE_{int} for the associations **Pb**...**N**₃ and **Pb**...**4**-**FBN** (kcal·mol⁻¹). Values listed in parentheses correspond to the values obtained based on the SMD solvation model.

Associations	$\Delta E_{ m int}$
₽b…N ₃	-316.48 (-305.37)
Pb…4-FBN	-106.18 (-94.64)

Table S5:

Topological parameters at bond critical points of the Pb-N and N-N bonds in $MOF-N_7$ '

BCPs	$\rho(\mathbf{r})$	$\nabla^2 \rho(\mathbf{r})$	<i>G</i> (r)	V(r)	H(r)	$ V(\mathbf{r}) /G(\mathbf{r})$
Pb(1)…N(1)	0.028552	0.024241	0.012277	-0.018494	-0.006217	1.506394
Pb(3)…N(1)	0.018723	0.026135	0.008237	-0.009940	-0.001703	1.206750
N(1)····N(2)	0.434017	-0.829389	0.371937	-0.951221	-0.579284	2.557479
N(2)…N(3)	0.370128	-0.454354	0.266194	-0.645976	-0.379782	2.426711
N(3)…N(4)	0.556798	-1.459952	0.484983	-1.334954	-0.849971	2.752579

Figure S1. The calculated ground structures for the $Pb \cdots N_3$ and $Pb \cdots 4$ -FBN associations.

Figure S2. The structures of the representative fragments $N_7^{3-}-C_{2h}$, $N_7^{3-}-C_{2\nu}$ and MOF- N_7 '.

Figure S3. The XPRD patterns obtained for MOF-N₇.

(b)

(c)

Figure S4. (a) The coordination environment of the Pb²⁺ ions in **MOF-N**₇ with the ellipsoids drawn at the 30% probability level. Distorted water molecules and all hydrogen atoms were omitted for clarity. (b) The 1D chain constructed via the $C_2O_4^{2-}$ anions and $[Pb_6O_2]^{8+}$ cationic clusters along the *a*-axis. (c) The 1D chain constructed via the CHDA²⁻ anions and Pb²⁺ ions along the *a*-axis. (d) The 2D metal-organic layer parallel to the *ab* plane in **MOF-N**₇. (e) The 3D open framework constructed from the 2D layers and N₇ anionic pillars of **MOF-N**₇.

Figure S5. The FT–IR spectrum obtained of $MOF-N_7$.

Figure S6. The coordination environment of the Pb^{2+} ions in α -Pb(N₃)₂ with the ellipsoids drawn at the 30% probability level.

Figure S7. The coordination environment of the Pb^{2+} ion in **Pb-FBA** with the ellipsoids drawn at the 30% probability level. Distorted water molecules and all hydrogen atoms were omitted for clarity.

Figure S8. The ELF- π isosurfaces (value = 0.70) of $N_7^{3-}C_{2\nu}$ (top) and the N_7^{3-} polynitrogen fragment in **MOF-N**₇' (bottom).

Figure S9. The TGA plot obtained for Pb-FBA at a heating rate of 10° C·min⁻¹ under a flow of N₂.