Supporting information

Facile synthesis of a Bi₂MoO₆ nanosheets/TiO₂ nanotube arrays composite by the solvothermal method and its application for high-performance supercapacitor

Jiang Wen, Shupei Sun, Bo Zhang, Nianfeng Shi, Xiaoming Liao*, Guangfu Yin,

Zhongbing Huang, Xianchun Chen, Ximing Pu

College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan

610065, China

Samples	[Precursors] (mmol) ^a		Temperature	Time
	Bi(NO ₃) ₃ ·5H ₂ O	Na ₂ MoO ₄ ·2H ₂ O	(°C)	(h)
BMO/TNT-1	1.0	0.5	160	4
BMO/TNT-2	1.0	0.5	160	8
BMO/TNT-3	1.0	0.5	160	12
BMO/TNT-4	1.0	0.5	160	16
BMO/TNT-5	0.5	0.25	160	12
BMO/TNT-6	2.0	1.0	160	12
BMO/TNT-7	4.0	2.0	160	12
BMO/TNT-8	1.0	0.5	140	12
BMO/TNT-9	1.0	0.5	180	12
BMO/TNT-10	1.0	0.5	200	12
Bi ₂ MoO ₆ /Ti	1.0	0.5	160	12

Table S1. Experimental conditions of the prepared samples.

^a 50 ml ethylene glycol add to all the samples as precursor.

To study the effect of precursor amounts on compositions and morphologies of the $Bi_2MoO_6/TNTs$, different amount of $Bi(NO_3)_3 \cdot 5H_2O$ and $Na_2MoO_4 \cdot 2H_2O$ (molar ratio 2:1) were dissolved in 50 mL of ethylene glycol. The $Bi_2MoO_6/TNTs$ prepared at 160 °C for 12 h with different amount of $Na_2MoO_4 \cdot 2H_2O$: 0.25 mmol, 1.0 mmol and 2.0 mmol were referred as BMO/TNT-5, BMO/TNT-6 and BMO/TNT-7 , respectively.

^{*} Corresponding author. Fax: +86 28 85413003. E-mail: sherman_xm@163.com (X.M. Liao).

Fig.S1 XRD patterns of the samples BMO/TNT-5, BMO/TNT-3, BMO/TNT-6 and BMO/TNT-7 (A). SEM images of BMO/TNT-5 (B), BMO/TNT-6 (C), BMO/TNT-7 (D). From Fig. S1A, we can see all samples are composed of Ti, anatase TiO₂ and Bi₂MoO₆. As can be observed, when the amount of Na₂MoO₄·2H₂O is 0.25 mmol, the nanosheets are uniformly distributed across the surface without aggregation (Fig. S1B). The surface morphology of BMO/TNT-5 presents thinner nanosheets structure than that of BMO/TNT-3. When the amount is increased to 1.0 mmol, a number of Bi₂MoO₆ nanoparticles, instead of nanosheets, grow on the surface of the TNTs. In this case, the TNTs provide a great deal of sites for the adsorption of metal ions (Bi³⁺, Mo⁶⁺) as well as the nucleation and growth of Bi₂MoO₆ nanoparticles (Fig. S1C). Increasing the amount further to 2 mmol causes the morphology of the Bi₂MoO₆ nanosheets (Fig. S1D). It appears that the nanoflowers are composed of a number of nanosheets, which radially grow from the center.

On the basis of the integrated area under the CV curve (Fig. S2A), the areal capacitances of BMO/TNT-3, BMO/TNT-5, BMO/TNT-6, and BMO/TNT-7 are 110.3, 90.1, 74.4 and 56.3 mF cm⁻² at a scan rate of 40 mV s⁻¹, respectively. From the discharging curves (Fig. S2B), the areal capacitances of those samples are 330, 279,

246 and 235 mF cm⁻² at a current density of 1 mA cm⁻². The results show that the BMO/TNT-3 presents better electrochemical performance.

Fig. S2 The CV plots at a scan rate of 40 mV s⁻¹ for BMO/TNT-3, BMO/TNT-5, BMO/TNT-6 and BMO/TNT-7 (A), areal capacitances of these samples measured as a function of scan rate (B), The GCD curves at a current density of 1 mA cm⁻² for BMO/TNT-3, BMO/TNT-5 BMO/TNT-6 and BMO/TNT-7 (C), the average areal capacitance at different current densities (D).

As we all know that the semiconducting nature and poor electrical conductivity of TiO_2 lead to the lower electrochemical activity. From Fig. S3, the areal capacitance of TNTs is only 5.8 mF cm⁻² at a current density of 1 mA cm⁻². Nevertheless, the areal capacitance of BMO/TNT-3 is 330.0 mF cm⁻² (Fig. S4), ~ 57 times more than the pristine TNTs electrodes.

Fig. S3 the CV plots at different scan rates for TNTs (A), galvanostatic charge–discharge curves for TNTs achieved from 0.8 mA cm⁻² to 1.6 mA cm⁻² (B).

Fig. S4 the CV plots at different scan rates for BMO/TNT-3 (A), galvanostatic charge–discharge curves for BMO/TNT-3 achieved from 1.0 mA cm⁻² to 5.0 mA cm⁻² (B).

In the end, by simply tuning the temperature of the solvothermal treatment, while keeping the precursor amount $(1.0 \text{ mmol Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$ and 0.5 mmol $\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$) and reaction time (12 h) unchanged, the morphology of the Bi_2MoO_6 nanostructures grown on TNTs can be further controlled. The $\text{Bi}_2\text{MoO}_6/\text{TNTs}$ composites prepared at 140°C, 180°C, 200°C for 12 h were referred as BMO/TNT-8, BMO/TNT-9, BMO/TNT-10, respectively.

Fig. S5B-D shows the SEM images of the BMO/TNT-8, BMO/TNT-9, and BMO/TNT-10, respectively. A lot of Bi_2MoO_6 nanoflakes grow on the surface of TNTs during the solvothermal treatment at 140 °C. When the temperature increases to 180 °C, the thin Bi_2MoO_6 nanoflakes are more compact. However, a further increase in the temperature to 200°C causes the morphology of the Bi_2MoO_6 to present non-uniform distributed nano-block structures.

Fig.S5 XRD patterns of the samples BMO/TNT-8, BMO/TNT-9 and BMO/TNT-10 (A). SEM images of BMO/TNT-8 (B), BMO/TNT-9 (C), BMO/TNT-10 (D).

From Fig. S6, the areal capacitances of BMO/TNT-3, BMO/TNT-8, BMO/TNT-9, and BMO/TNT-10 were 330, 265, 245 and 84 mF cm⁻² at a current density of 1 mA cm⁻², respectively. It demonstrates that the proper reaction temperature can be propitious to improve the electrochemical properties of the composite electrode.

Fig. S6 The CV plots at a scan rate of 40 mV s⁻¹ for BMO/TNT-3, BMO/TNT-8, BMO/TNT-9 and BMO/TNT-10 (A), areal capacitances of these samples measured as a function of scan rate (B), The GCD curves at a current density of 1 mA cm⁻² for BMO/TNT-3, BMO/TNT-8, BMO/TNT-9 and BMO/TNT-10 (C), the average areal capacitance at different current densities (D).

Fig.S7 XRD patterns of the samplesTi and Bi₂MoO₆/Ti.