Supplementary data

A green approach to prepare hierarchical porous carbon nanofibers from coal for high-performance supercapacitors

Fenglian Tong, Wei Jia, Yanliang Pan, Jixi Guo,* Lili Ding, Jingjing Chen, Dianzeng Jia*

Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang P. R. China. Email: jxguo1012@163.com; jdz@xju.edu.cn; Fax: +86-991-8588883; Tel: +86-991-8583083.

Figure S1. TG curves of oxidized coal, PVA, F127 and precursor CNFs-F4-900, respectively.

Figure S2. SEM images of HPCNFs (a) CNFs-F2-800; (e) CNFs-F2-1000; TEM images of HPCNFs (b, c) CNFs-F2-800; (f, g) CNFs-F2-1000; and HRTEM images of HPCNFs (d) CNFs-F2-800; (h) CNFs-F2-1000.

Figure S3. XRD patterns of oxidized coal.

Figure S4. (a) XPS survey spectra, (b) XPS of C1s region of the CNFs-F2-800 and (c) XPS survey spectra, (d) XPS of C1s region of the CNFs-F2-1000.

Table S1. C, O and H contents evaluated from XPS elemental analysis.

Samples	Elemental Analysis					
	C (wt. %)	O (wt. %)	H (wt. %)			
CNFs-F2-800	85.01	12.70	2.29			
CNFs-F2-900	88.51	10.33	1.16			
CNFs-F2-1000	93.96	5.40	0.64			

Figre S5. N₂ adsorption-desorption isotherms (a) and pore size distributions (b) of CNFs-F2-800, CNFs-F2-900 and CNFs-F2-1000.

Table S2. BET specific surface areas and porous structure of CNFs-F2-800, CNFs-F2-900 and CNFs-F2-1000.

Sample	$\mathbf{S}_{\text{BET}}^{a}$	S _{meso} ^b	S _{micro} ^c	$V_{total}{}^d$	V _{meso} ^e	$V_{\text{micro}}{}^{\mathrm{f}}$	$\mathrm{D}_{\mathrm{ap}}{}^{\mathrm{g}}$
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^3 g^{-1})$	$(m^3 g^{-1})$	$(m^3 g^{-1})$	(nm)
CNFs-F2-800	849	399	450	0.42	0.28	0.14	2.6
CNFs-F2-900	1161	429	733	0.76	0.45	0.31	2.7
CNFs-F2-1000	1007	403	604	0.69	0.44	0.25	2.7

^a BET surface area.

^b Micropore surface area calculated using the V-t plot method.

^c Mesopore surface area calculated using the V-t plot method.

^d The total pore volume calculated by single point adsorption at $P/P_0 = 0.99$.

^e The mesopore volume calculated using the V-t plot method.

^fThe micropore volume calculated using the V-t plot method.

^g Average pore size.

Figure S6. (a) CV curves of the samples at the scan rate of 100 mV s⁻¹; (b) galvanostatic charge-discharge curves of the samples at the same scan rate of 1.0 A g^{-1} .

Figure S7. SEM characterizations of the CNFs-F2-900 electrode after 20000 discharge/charge cycles at 10.0 A g⁻¹.

Electrode Material	Specific	Electrolyte	cycling stability	Reference
	Capacitance			
water etching-assisted templating	195 F g ⁻¹	6 M KOH	91% 1 A g ⁻¹	[18]
activated mesoporous carbon nanofibers	at 1.0A g ⁻¹		3000 cycles	
porous carbon nanofibers	144 F g ⁻¹	6 M KOH	90% 0.5 A g^{-1}	[21]
	at 0.1 A g ⁻¹		1000 cycles	
hierarchical porous carbon nanofibers	251F g ⁻¹	6 M KOH	97% 2 A g ⁻¹	[24]
	at 1.0 A g ⁻¹		1000 cycles	
steam activated carbon nanofibers	230 F g ⁻¹	6 M KOH	88% 1 A g ⁻¹	[13]
	at 1.0 A g ⁻¹		5000 cycles	
coal derived porous carbon fibers	170 F g ⁻¹	6 M KOH	100% 1 A g ⁻¹	[31]
	at 1.0 A g ⁻¹		20000 cycles	
coal based porous carbon nanofibers	265.2 F g ⁻¹	6 M KOH	105% 10 A g ⁻¹	This work
	at 1.0 A g ⁻¹		20000 cycles	

Figure S8. (a) CV curves and (b) CP cures of the CNFs-F2-900 sample at different current densities.