Supporting Information Utilizing FBR to produce olefins from CO reduction using Fe-Mn nanoparticles on reduced graphene oxide catalysts and comparing the performance with SBR

AL-Hassan Nasser ^{1, 2*}, Hamada ELnaggar ¹, Ahmed AbdelMoneim ^{1*}

¹ Materials Science and Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria 21934, Egypt

² Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt

* Corresponding authors: codecsubzero@gmail.com; ahmed.abdelmoneim@ejust.edu.eg

1. FBR results

	Fe	FeMn1	FeMn2	Fe	FeMn1	FeMn2	Fe	FeMn1	FeMn2
		6	9		6	9		6	9
T (°C)	300		320			340			
CO conv %	43	60	33	70	93	72	82	98	91
Fraction	Selectivity C mol%								
CO ₂	14	25	16	29	37	23	38	41	36
CH ₄	31	11	10	39	8.3	12	40	17	24
C 2-4 olefin	12	23	20	6.4	20	28	2.6	22	40
C 5-9 olefin	5.8	20	25	2.7	25	28	1.1	14	14
Total olefin	18	47	55	10	49	63	3.8	40	54
C9+ HC	1.7	16	17	0.9	21	5.21	0.2	18	0.32
				1			9		
Total	71	33	35	86	26	32	92	39	46
Paraffin									
Total iso	11	19	11	4.0	25	5.8	3.8	20	2.5
Total par +	82	52	45	90	51	37	96	60	47
iso									
O/P	0.2	0.90	1.22	0.1	0.96	1.7	0.0	0.67	1.1
	2			1			4		
Olefin yield	6.6	21	15	4.6	29	35	1.9	23	31
α	0.5	0.71	0.75	0.5	0.77	0.66	0.4	0.71	0.48
	5			1			2		
Reaction conditions: H ₂ /CO = 1, 4.2 l/gh, 2MPa									

Table S 1: The effect of Mn loading and Temperature on the FBR FTS performance

	FeMn16				
GHSV (l/gh)	4.2	6.2	8.2		
CO conversion %	92	93	94		
Fraction	Selectivity C mol%				
CO ₂	37	37	44		
CH ₄	8.3	17	23		
C 2-4 olefin	20	27	30		
C 5-9 olefin	25	15	14		
Total olefin	49	45	46		
С9+ НС	21	19	7.4		
Total Paraffin	26	39	45		
Total iso	25	16	8.9		
Total par + iso	51	55	54		
O/P	0.96	0.82	0.84		
Olefin yield	29	26	24		
α	0.77	0.61	0.58		

 Table S 2: Effect of space velocity on the FBR FTS performance

	FeMn16				
P (MPa)	1	2			
CO conversion %	84	93			
Fraction	Selectivity C mol%				
CO ₂	35	37			
CH ₄	18	8.3			
C 2-4 olefin	30	20			
C 5-9 olefin	19	25			
Total olefin	52	49			
С9+ НС	8.58	21			
Total Paraffin	40	26			
Total iso	11	25			
Total par + iso	50	51			
O/P	1.0	0.96			
-Olefin yield	28	29			
α	0.63	0.77			
Reaction conditions: H ₂ /CO=1, 320 °C, 4.2 L/g.h					

Table S 3: Effect of pressure on the FBR FTS performance

2. Calculation scheme

The equations used to calculate the catalyst performance are summarized as follows:

For the inlet conditions the molar rate is calculated by using the Gas Law:

$$F_{0t} = \frac{\dot{V} \times P_r \times 100 \times 60}{10^6 \times 8.314 \times (T_r + 273)} \quad \frac{mol}{h}$$

At any time during the reaction the molar rate is measured by the same law but using the instantaneous flow rate as measured from the bubble flow meter:

$$F_0 or F = \frac{P_r \times 100 \times 10 \times 3600}{t_0 or t \times 10^6 \times 8.314 \times (T_r + 273)} \quad \frac{mol}{h}$$

Where P_r and T_r are the room temperature and pressure, V is the volumetric flow rate of the feed, and t is the time in s/10ml gas (bubble flow meter reading).

The product molar rates for any gas species *i* are calculated as follows utilizing the GC-TCD data:

$$F_{i} = \frac{F \times EAT_{i} \times x_{i}}{SAT_{i}} \frac{C \, mol}{h} \quad i = CH_{4}, \, CO \, or \, CO_{2}, \, TCD \, Area$$

 EAT_i is the TCD area for component (*i*) in the exit stream

 SAT_i is the TCD area for component (*i*) in the standard gas

The TCD data is used to calculate the CO conversion from the following equation if Ar is used as an internal standard

$$f_{co}\% = \mathbf{1} - \frac{EAT_{co}/EAT_{Ar}}{FAT_{co}/FAT_{Ar}} \times \mathbf{100}$$

If an external standard is used like CO or CH₄ then the conversion can be calculated as follows

$$f_{CO}\% = 1 - \frac{F_{CO}}{y_{0} co F_{0}} \times 100$$

From the gas FID data we can compute the light hydrocarbon mole rates as follows

$$FG_{N,(o/p/i/t)} = \frac{F \times AG_{N,(o/p/i/t)} \times x_{CH_4}}{SAF_{CH_4}} \frac{C \ mol}{h}$$

 $FG_{N, (o/p/i/t)}$ is the mole rate of the component N in the exit gas stream

 $AG_{N, (o/p/i/t)}$ is the FID peak area for component N in the gas product, it can be calculated for olefins, paraffins, iso-paraffins or for the total hydrocarbon fraction, hence the subscript (o/p/i/t).

SAF_{CH4} is the FID peak area for methane in the standard gas

 x_{CH_4} is the methane mol fraction in the standard gas

And from the liquid FID data the heavy hydrocarbons' molar rate is produced from the following equation

$$FL_{N,(o/p/i/t)} = \frac{AL_{N,(o/p/i/t)} \times W_{12} \times N_{12}}{A_{C12} \times M_{12} \times TOS} \frac{C \ mol}{h}$$

 $FL_{N, (o/p/i/t)}$ is the mole rate of the component N in the liquid product.

 $AL_{N, (o/p/i/t)}$ is the FID peak area for component N in the liquid product, it can be calculated for olefins, paraffins, iso-paraffins or for the total hydrocarbon fraction, hence the subscript (o/p/i/t).

 W_{12} : is the mass of the n-dodecane external standard used for the FID area calibration.

 N_{12} is the number of carbon atoms in n-dodecane

 A_{C12} is the FID peak area for the C12 fraction, since the amount of n-dodecane is very big compared to the C-12 fraction products in the liquid products, therefore the area can be assumed to represent n-dodecane only.

M₁₂: is the Molecular weight of n-dodecane

TOS: is the total Time On Stream

Then we can calculate the total molar rate in Cmol or mol/h of each carbon number as follows

$$F_{N,t}Cmol = FG_{N,t} + FL_{N,t} \quad \frac{Cmol}{h}$$

$$F_{N,t} = \frac{FG_{N,t} + FL_{N,t}}{N_N} \quad \frac{mol}{h}$$

N_N: is the number of carbon atoms in an alkane of chain length N

The selectivities for the hydrocarbon fractions can be computed from the following equations:

$$S Cmol_{N,(o/p/i/t)} \% = \frac{FG_{N,(o/p/i/t)} + FL_{N,(o/p/i/t)}}{\sum_{N} F_{N,t}} \frac{Cmol HC}{Cmol CO reacted}$$

$$S mol_{N,(o/p/i/t)} \% = \frac{FG_{N,(o/p/i/t)} + FL_{N,(o/p/i/t)}}{\sum_{N} F_{N,t} \times N_{N}} \frac{mol HC}{mol THC}$$

If the selectivity are summed up across the carbon numbers by family (paraffins or olefins or isoparaffins), then the total family selectivity can be obtained:

$$S Cmol_{(o/p/i)}\% = \sum_{N} S Cmol_{N,(o/p/i)}\%$$

When the total olefin selectivity is divided by the total paraffin and iso paraffins selectivity we get the olefin to paraffin ratio as follows:

$$O/P = \frac{S Cmol_o\%}{S Cmol_p\% + S Cmol_i\%}$$

The total carbon balance of the system must be $\leq 100\%$ and is calculated as follows:

$$CB\% = \frac{\sum_{N} F_{N,t} Cmol + F_{CO_2}}{F_0 \times y_{CO} \times f_{CO}\%} \times 100$$

The hydrocarbons' molar rate is then used to calculate the mass rates according to the following equation:

$$W_N = F_{N,t} \times M_N \quad \frac{g}{h}$$

From the mass rates the ASF probability factor α can be calculated from the gradient of the plot between log (W_N/N) and (N-1) by using single variable regression.