Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting information for

Efficient dehydrogenation of formic acid-ammonium formate mixture over Au₃Pd₁ catalyst

Xiao-Tong Guo, Juan Zhang, Jian-Chao Chi, Zhi-Hui Li, Yu-Chen Liu, Xin-Ru Liu,

Shu-Yong Zhang*a

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100,

P. R. China.

*Corresponding author: syzhang@sdu.edu.cn

S1. Calculation methods:

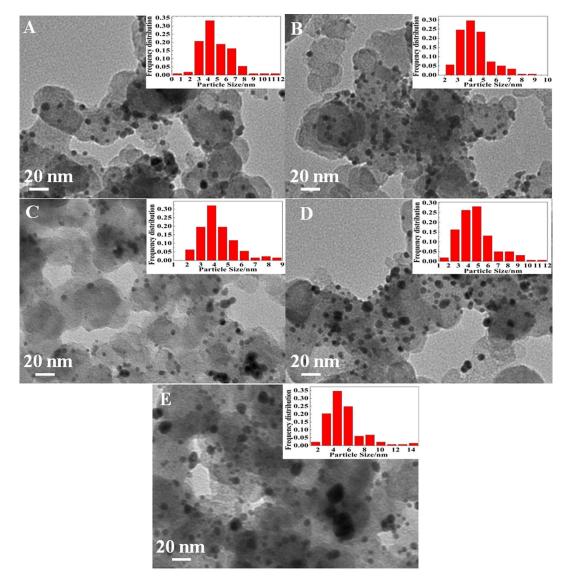
 The turnover of frequency (TOF) is calculated based on the amount of Pd and Au atoms in the catalyst using the following equation:

$$\text{TOF} = \frac{pV / RT}{n_{\text{Pd+Au}}t}$$

where p is the atmospheric pressure, V is the volume of H₂ measured at standard temperature and pressure (STP), R is the universal gas constant, T is the absolute temperature, n_{Pd+Au} is the mole number of Pd and Au in the catalyst, and t is the reaction time.

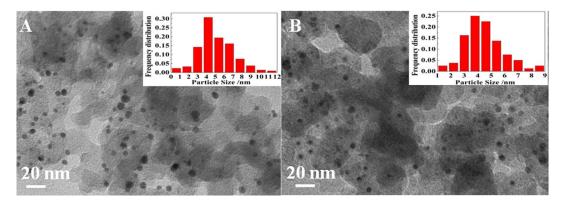
(2) The content of NH₃ is calculated as follows:

$$x_{\rm NH_3} = \frac{m \times 25 \times 22.4 \times 1000}{14.01 V_{\rm CO_2 + H_2}}$$


Where x_{NH_3} is the NH₃ content in ppm, *m* (mg/L) *is* the concentration of N in the diluted H₂SO₄ solution, 14.01 is the relative atomic mass of N, 22.4 is the standard molar volume of ideal gases at STP.

The content of NH_3 reported in the text was based on three experimental results. The measurement of NH_3 content was based on the relevant standards (GB/T 18204. 25—2000, HJ 535—2009).

S2. TEM images for the AuPd/C catalysts.


Fig. S1 TEM images and particle size distribution of the newly prepared (A)

Au_{0.5}Pd₁/C, (B) Au₁Pd₁/C, (C) Au₂Pd₁/C, (D) Au₄Pd₁/C and (E) Au₅Pd₁/C catalysts.

The mean particle sizes of the $Au_{0.5}Pd_1/C$, Au_1Pd_1/C , Au_2Pd_1/C , Au_4Pd_1/C and Au_5Pd_1/C catalysts were 4.86, 4.29, 4.25, 4.78 and 5.33 nm, respectively.

Fig. S2 TEM images and particle size distribution of the recovered Au₃Pd₁/C catalysts

after the 2^{nd} run (A) and 4^{th} run (B).

S3. Composition analysis for the AuPd/C catalysts.

Catalyst	Metal content (wt%)	Atom ratio (Au/Pd)
$Au_{0.5}Pd_1/C$	Au, 22.37%; Pd, 25.70%	0.47
Au_1Pd_1/C	Au, 34.42%; Pd, 19.36%	0.96
Au_2Pd_1/C	Au, 43.30%; Pd, 12.14%	1.93
Au_3Pd_1/C	Au, 48.23%; Pd, 8.70%	2.99
Au_4Pd_1/C	Au, 50.47%; Pd, 7.06%	3.86
Au_5Pd_1/C	Au, 52.88%; Pd, 5.93%	4.82

Table S1. ICP results for the composition of the AuPd/C catalysts.

Table S2. XPS results for the content of metal on the surface of AuPd/C catalysts.

Catalyst	Atomic %	Atom ratio (Au/Pd)
$Au_{0.5}Pd_1/C$	Au, 1.17%; Pd, 1.95%	0.6
Au_1Pd_1/C	Au, 1.85%; Pd, 1.89%	0.98
Au_2Pd_1/C	Au, 2.38%; Pd, 1.46%	1.63
Au_3Pd_1/C	Au, 0.74%; Pd, 0.31%	2.39
Au_4Pd_1/C	Au, 1.84%; Pd, 0.76%	2.42
Au ₅ Pd ₁ /C	Au, 2.23%; Pd, 0.85%	2.62

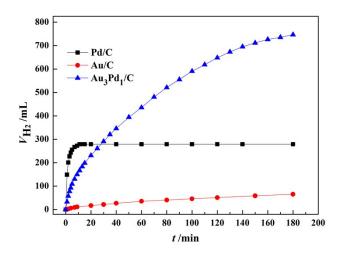


Fig. S3 H_2 generation from 10 mL mixture with 3 mol/L FA and 3 mol/L AF over 60

mg of Pd/C, Au/C, Au₃Pd₁/C catalysts at 365 K.

S5. XPS spectrum of the Au₃Pd₁/C catalyst.

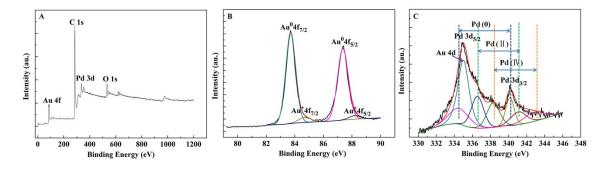


Fig. S4(A) XPS spectrum of the Au₃Pd₁/C catalyst; high-resolution XPS spectrum of

(B) Au 4f and (C) Pd 3d in the Au₃Pd₁/C catalyst.

S6. Detailed information for the dehydrogenation of FA-AF mixture.

Table S3. The maximum volume of H_2 , initial TOF for the first 10 min,

$c_{\mathrm{FA+AF}}/\mathrm{mol}/\mathrm{L}$	$V_{\rm H_2}/\rm{mL}$	Initial TOF/h ⁻¹	$\eta_{ m FA}$ /%	$\eta_{ m AF}$ /%
2	310	145.1	100	38.4
4	330	227.8	100	47.3
6	330	269.6	100	47.3
8	307	293.1	100	37.1
10	315	312.2	100	40.6

different concentrations.

S7. Comparison of activation energies of various catalysts.

Table S4. Comparison of activation energies of various catalysts for dehydrogenation

Catalysts	Ea (KJ/mol)	Ref
PtRuBiOx/C	37.3	[1]
Au/ZrO ₂	49.3	[2]
Au41Pd59/C	28±2	[3]
$(Co_3)_EAu_{0.6}Pd_{0.4}/rGO$	39.77	[4]
Ag ₁₀ Pd ₉₀ /0.2CND/SBA-15	43.2	[5]
Pd _{0.5} Au _{0.3} Mn _{0.2} /N-SiO ₂	26.2	[6]
Au _{0.75} Pd _{0.25} /C-L-7.5	42.23	[7]
5 wt% Pd/C	39	[8]
Au ₃ Pd ₁ /C	23.3±1.3	this study

of FA.

S8. GC spectrum of the released gas.

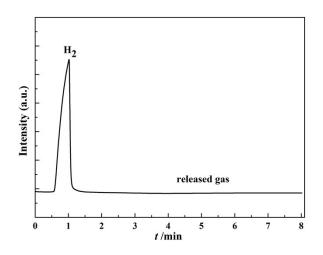


Fig. S5 GC spectrum using TCD for the released gas from 5 mL mixture with 5 mol/L

FA and 7.5 mol/L AF over the Au_3Pd_1/C catalyst at 365 K.

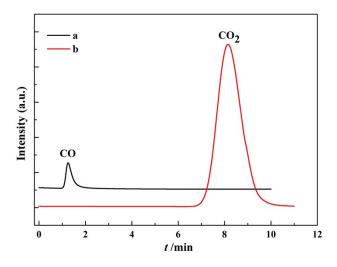


Fig. S6 GC spectrum using FID-Methanator for the (a) pure CO and (b) released gas from 5 mL mixture with 5 mol/L FA and 7.5 mol/L AF over the Au_3Pd_1/C catalyst at

365 K. The detection limit of CO is 5 ppm.

S9. The content of NH₃ from the released gas.

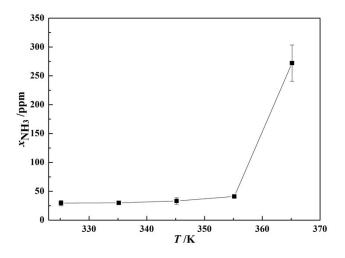


Fig. S7 The content of NH₃ from the released gas from 5 mL mixture with 5 mol/L FA and 7.5 mol/L AF at different temperatures over the Au₃Pd₁/C catalyst. The theoretical conversion of FA in each case is 10%.

S10 Notes and references

- 1 S. W. Ting, S. A. Cheng, K. Y. Tsang, N. van der Laak and K. Y. Chan, *Chem. Commun.*, 2009, 7333-7335.
- 2 Q. Y. Bi, X. L. Du, Y. M. Liu, Y. Cao, H. Y. He and K. N. Fan, J. Am. Chem. Soc.,
- 2012, 134, 8926-8933.
- 3 O. Metin, X. L. Sun and S. H. Sun, Nanoscale, 2013, 5, 910-912.
- 4 X. C. Yang, P. Pachfule, Y. Chen, N. Tsumori and Q. Xu, *Chem. Commun.*, 2016, 52, 4171-4174.
- 5 L. Xu, B. Jin, J. Zhang, D. G. Cheng, F. Q. Chen, Y. An, P. Cui and C. Wan, *RSC Adv.*, 2016, 6, 46908-46914.

6 Y. Karatas, A. Bulut, M. Yurderi, I. E. Ertas, O. Alal, M. Gulcan, M. Celebi, H. Kivrak, M. Kaya and M. Zahmakiran, *Appl. Catal. B: Environ.*, 2016, 180, 586-595.

7 J. Cheng, X. J. Gu, X. L. Sheng, P. L. Liu and H. Q. Su, J. Mater. Chem. A, 2016, 4, 1887-1894.

8 F. Sanchez, D. Motta, A. Roldan, C. Hammond, A. Villa and N. Dimitratos, *Top. Catal.*, 2018, 61, 254-266.