Supplementary Information

Formation of MoTe₂ Based Schottky Junction Employing Ultra-low and High Resistive Metal Contacts

Sikandar Aftab^a, Muhammad Waqas Iqbal^b*, Amir Muhammad Afzal^a, M. Farooq Khan^a, Muhammad Waqas Iqbal^b*, Ghulam Hussain^b, Hafiza Sumaira Waheed^b Muhammad Arshad Kamran^c

^aDepartment of Physics & Astronomy and Graphene Research Institute, Sejong University, Seoul 05006, Korea

^bDepartment of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan

^cDepartment of Physics, College of Science, Majmaah University, P.O. Box no. 1712, Al-Zulfi 11932, Saudi Arabia.

E-mail: <u>waqas.iqbal@riphah.edu.pk</u>

Figure S1. (a) Typical AFM image of p-MoTe₂ Schottky junction on SiO_2/p^+ - Si substrate. Corresponding step height profile from the AFM lines scan as shown. The p-MoTe₂ flakes have a thickness of ~8 nm.

Figure S2. Transfer characteristics at different temperatures with Cr/Au metal contacts.

Figure S3. Raman spectra of p-MoTe₂ nano-flakes.