Supporting Information

New rhodamine B-based chromo-fluorogenic probes for highly selective detection of aluminium(III) ion and their application in living cell imaging

Xin Leng,^{‡a} Wenfeng Xu,^{‡a} Chengfang Qiao,^{*b} Xu Jia,^a Ying Long,^a and Bingqin Yang^{*a}

^{*a*} Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.

^b Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China.

Fig. S1 Fluorescence spectra of **BOS2** (10 μ M) in ethanol-water (1:9, v/v, Tris-HCl, pH =7.2) solution upon addition of various metal ions (10 μ M).

Fig. S2 Fluorescence spectra of **BOS2** (10 μ M) with the addition of various concentrations of Al³⁺ ions (0–12.5 μ M) in ethanol-water (1:9, v/v, Tris-HCl, pH =7.2) solution.

Fig. S3 Determination of binding constant of BOS2 with Al^{3+} using Benesi–Hildebrand equation.

Fig. S4 The plot of $(F_{min}-F_x)/(F_{min}-F_{max})$ versus $\log[Al^{3+}]$ for the probe **BOS2**.

Fig. S5 Fluorescence intensity changes of **BOS2** (10 μ M) upon the addition of various metal ions (10 μ M) in the presence of Al³⁺ (10 μ M) in ethanol-water (1:9, v/v, Tris-HCl, pH =7.2) solution. The black bars represent the fluorescence response of **BOS2** and metal ions. The red bars represent the subsequent addition of 10 μ M Al³⁺ to the above solutions.

Fig. S6 UV–vis absorption spectra of **BOS2** (10 μ M) in ethanol-water (1:9, v/v, Tris-HCl, pH =7.2) solution upon addition of various metal ions (10 μ M).

Fig. S7 UV–vis absorption spectra of **BOS2** (10 μ M) with the addition of various concentrations of Al³⁺ ions (0–12.5 μ M) in ethanol-water (1:9, v/v, Tris-HCl, pH =7.2) solution.

Fig. S8 UV–vis absorption intensity changes of 10 μ M **BOS1** (left) and **BOS2** (right) upon the addition of various metal ions (10 μ M) in the presence of Al³⁺ (10 μ M) in ethanol-water (1:9, v/v, Tris-HCl, pH =7.2) solution. The black bars represent the absorption response of probes and metal ions. The red bars represent the subsequent addition of 10 μ M Al³⁺ to the above solutions.

Fig. S9 Effects of pH on BOS2 (10 μ M) response to Al³⁺ (the pH of solution was adjusted by aqueous solution of NaOH (1 mol/L) and HCl (1 mol/L)).

Fig. S10 Effects of time on **BOS2** (10 μ M) response to Al³⁺ in ethanol-water (1:9, v/v, Tris-HCl, pH =7.2) solutions.

Fig. S11 Job's plot of BOS2 and Al^{3+} (the total concentration was 10 μ M).

concentration (µmol/L)	BOS1		BOS2		Al ³⁺	
	Abs	Cell survival %	Abs	Cell survival %	Abs	Cell survival %
6.25	1.0094±0.1342	89.11	0.9187±0.0580	99.64	0.9566±0.0665	96.50
12.50	0.9627±0.0424	85.01	0.8667 ± 0.0694	94.01	0.8813±0.0155	88.90
25.00	0.9573±0.1231	84.52	0.8333±0.0820	90.38	0.8583±0.0156	86.58
50.00	0.8753±0.0522	77.28	0.8267 ± 0.0427	89.66	0.7807±0.0171	78.75
100.00	0.8547±0.0775	75.46	0.7920±0.0457	85.90	0.7250±0.0655	73.13
Blank	1.1327±0.0808		0.9220±0.0125		0.9913±0.0045	

Table S1 Cytotoxicity data of BOS1, BOS2 and Al³⁺ (SGC 7901, 24h)

Mass Spectrum SmartFormula Report

Fig. S12 ESI-MS spectra of RBO (a), BOS1 (b), BOS2 (c).

Fig. S13 The IR spectra of BOS1 (a) and BOS2 (b).

Fig. S14 The ¹H NMR spectrum of RBO in CDCl_{3.}

Fig. S15 The ¹H NMR (a) and ¹³C NMR (b) spectra of BOS1 in $CDCl_{3.}$

Fig. S16 The ${}^{13}C$ NMR (a) and ${}^{1}H$ NMR (b) spectra of BOS2 in CDCl₃.