Supporting information

Influence of poly(lactide) stereocomplexes as nucleating agents on the crystallization behaviors of poly(lactide)s

Nuo Ji, Guang Hu, Jianbo Li and Jie Ren*

Institute of Nano and Bio-Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, School of

Material Science and Engineering, Tongji University, Shanghai 201804, China.

Contents

- 1. FTIR/ATR spectra of PDLA, 4aPDLA, scPLA and 4ascPLA.
- 2. POM images during non-isothermal crystallization.
- 3. Relative crystallinity as a function of time for the (a) PDLA-scPLAx,
 (b) PDLA-4ascPLAx, (c) PLLA-scPLAx, and (d) PLLA-4ascPLAx
 samples during isothermal crystallization at 110°C.
- 4. Relative crystallinity as a function of time for the (a) PDLA-scPLA10%, (b) PLLA-scPLA10%, (c) PDLA-4ascPLA10%, and (d) PLLA-4ascPLA10% samples during isothermal crystallization at various temperatures.
- 5. Values of $t_{1/2}$ and crystallization kinetic parameters for PLA/NA samples with various

nucleating agent contents at $T_{iso} = 110^{\circ}$ C.

- 6. Values of $t_{1/2}$ and crystallization kinetic parameters for PLA-NA10% samples at various T_{iso} values.
- 7. POM images obtained during the isothermal crystallization of (a) PLLA-scPLA6% and(b) PLLA-4ascPLA6% at various temperatures.

- 4ascPLA b а 4ascPLA aPDLA PDLA scPLA scPLA 4aPDLA PDLA 930 920 910 Wavenumber (cm⁻¹) 900 890 1800 1780 1760 1740 Wavenumber (cm⁻¹) 1720 1700 С 4ascPLA scPLA 4aPDLA PDLA 3040 3020 000 2980 2960 Wavenumber (cm⁻¹) 2940 2920 3000
- 1. FTIR/ATR spectra of PDLA, 4aPDLA, scPLA and 4ascPLA.

Figure S1. FTIR spectra of the homocrystal and stereocomplex specimens in the range of (a) 935–885 cm⁻¹, (b) 1800–1700 cm⁻¹, and (c) 3040–2920 cm⁻¹.

2. POM images during non-isothermal crystallization.

Samples compressed between two slides were heated at 200°C for 5 min to remove the thermal history. Photomicrographs were then obtained while cooling to room temperature at a rate of 20°C \cdot min⁻¹. Photomicrographs obtained at various temperatures (150°C, 140°C, 130°C, and 120°C) are presented in Fig. 5. The results revealed the formation of small spherulitic crystallites in the PLLA-NA specimens at 150°C.

Figure S2. POM images during the non-isothermal crystallization of (a) PLLA-scPLAx and (b) PLLA-4ascPLax.

3. Relative crystallinity as a function of time for the (a) PDLA-scPLAx, (b) PDLA-4ascPLAx, (c) PLLA-scPLAx, and (d) PLLA-4ascPLAx samples during isothermal

Figure S3. Relative crystallinity as a function of time for the (a) PDLA-scPLAx, (b) PDLA-4ascPLAx, (c) PLLA-scPLAx, and (d) PLLA-4ascPLAx samples during isothermal crystallization at 110°C.

4. Relative crystallinity as a function of time for the (a) PDLA-scPLA10%, (b)

PLLA-scPLA10%, (c) PDLA-4ascPLA10%, and (d) PLLA-4ascPLA10%

samples during isothermal crystallization at various temperatures.

Figure S4. Relative crystallinity as a function of time for the (a) PDLA-scPLA10%,

(b) PLLA-scPLA10%, (c) PDLA-4ascPLA10%, and (d) PLLA-4ascPLA10% samples during isothermal crystallization at various temperatures.

5. Values of $t_{1/2}$ and crystallization kinetic parameters for PLA/NA samples with various nucleating agent contents at $T_{iso} = 110^{\circ}$ C.

Table S1 Values of $t_{1/2}$ and crystallization kinetic parameters for PLA/NA samples with various nucleating agent contents at a $T_{iso} = 110^{\circ}$ C.

Sample	x = 0%			<i>x</i> = 0.5%			<i>x</i> = 2%			x = 6%			<i>x</i> = 10%		
	t _{1/2} / min	n	k	<i>t</i> _{1/2} / min	n	k	<i>t</i> _{1/2} / min	n	k	<i>t</i> _{1/2} / min	n	k	<i>t</i> _{1/2} / min	n	k
PDLA-scPLAx	5.27	2.05	0.024	4.47	2.18	0.027	3.76	2.43	0.028	3.04	2.72	0.033	2.29	2.83	0.055
PDLA-4ascPLAx	5.27	2.05	0.024	3.97	1.84	0.055	3.21	2.02	0.073	2,42	2.53	0.075	2.07	2.74	0.101
PLLA-scPLAx	4.32	2.09	0.033	3.35	2.25	0.046	2.66	2.13	0.081	1.38	2.65	0.326	1.18	2.66	0.450
PLLA-4ascPLAx	4.32	2.09	0.033	3.15	1.92	0.077	2.12	2.16	0.160	1.21	2.53	0.432	1.01	2.66	0.690

6. Values of $t_{1/2}$ and crystallization kinetic parameters for PLA-NA10% samples at various T_{iso} values.

Table S2 Values of $t_{1/2}$ and crystallization kinetic parameters for PLA-NA10% samples at various T_{iso} values.

Sample	120°C			115°C			110°C			105°C		
	t _{1/2} /	n	k	<i>t</i> _{1/2} / min	n	k	<i>t</i> _{1/2} / min	n	k	<i>t</i> _{1/2} / min	п	k
PDLA-scPLA10%	4.28	2.50	0.018	3.36	2.45	0.036	2.29	2.83	0.055	1.43	2.90	0.247
PDLA-4ascPLA10%	3.80	2.39	0.028	2.82	2.57	0.049	2.07	2.74	0.101	1.50	2.64	0.233
PLLA-scPLA10%	3.26	2.06	0.061	1.93	2.54	0.130	1.18	2.66	0.450	0.82	3.35	1.353
PLLA-4ascPLA10%	2.83	2.08	0.094	1.69	2.11	0.230	1.01	2.66	0.690	0.83	2.98	1.252

7. POM images obtained during the isothermal crystallization of (a) PLLA-

scPLA6% and (b) PLLA-4ascPLA6% at various temperatures.

Similar to the previous measurements, the PLLA-NA6% samples were first melted at 200°C for 5 min to remove the thermal history and then rapidly cooled to the desired temperature ($T_{iso} = 155$ °C, 150°C, 145°C, or 140°C) for isothermal crystallization.

Figure S5. POM images obtained during the isothermal crystallization of (a) PLLA-scPLA6% and (b) PLLA-4ascPLA6% at various temperatures.