Application of dehydroalanine as a building block for the synthesis of selenocysteine-containing peptides

Kishorkumar M. Reddy, Govindasamy Mugesh*

mugesh@iisc.ac.in

Electronic Supplementary
Information

Table of Contents

S. No	Contents	Page/ Page range
1	General procedure for the peptide synthesis	$3-4$
2	Stacked ${ }^{77}$ Se NMR of Compound 9d reaction with $\mathrm{I}_{2} / \mathrm{MeOH}$, followed by reduction with NaBH_{4} and trapping the selenol with lodoacetic acid	5
3	UV - Visible spectrum and ESI-MS of compound 22 before and after irradiating at 366 nm	5
4	HPLC chromatogram of Dha peptides and seleno peptides	$5-7$
5	Spectroscopic characterization ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{77}$ Te $)$	$9-30$
6	ESI-MS data of selected Dha and Seleno-Peptides	$31-37$
7	References	38

General procedure:

All the amino acids were purchased from GL Biochem (Shanghai) Ltd. Methanol was obtained from Merck. All other chemicals were of the highest purity available. Most reactions were carried out in a well-ventilated fume hood to avoid the unpleasant odour and toxic nature of the reaction mixtures involved. Thin-layer chromatography analyses were carried out on pre-coated silica gel plates (Merck), and spots were visualized under UV radiation. Column chromatography was performed on glass columns loaded with silica gel. ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}(100.56 \mathrm{MHz})$, and ${ }^{77} \mathrm{Se}(76.29 \mathrm{MHz})$ NMR spectra were obtained on a Bruker 400 MHz NMR spectrometer. Chemical shift values are cited with respect to SiMe_{4} as internal (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and $\mathrm{Me}_{2} \mathrm{Se}$ as external $\left({ }^{77} \mathrm{Se}\right)$ standard. A Perkin-Elmer Lambda 5 UV/Vis spectrophotometer and high-performance liquid chromatography (HPLC) having a 2695 separation module and UV detector were used. The HPLC system was controlled by EMPOWER software (Waters corporation, Milford, MA). Mass spectral studies were carried out on a Bruker Daltonics Esquire 6000 plus mass spectrometer with ESI-MS mode analysis.

General procedure for the peptide synthesis.

Boc-protection: The free amino acid (1 equiv.) was dissolved in the aq. NaHCO_{3} solution and cooled the reaction mixture to $0^{\circ} \mathrm{C}$ and added Boc anhydride (1.2 equiv.) in dioxane to the reaction mixture at $0^{\circ} \mathrm{C}$. After 5 min , removed the ice bath and reaction mixture was stirred at $27{ }^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was acidified with dil. HCl and extracted with ethylacetate. The organic layer was washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford the boc-protected amino acid in quantitative yield. This boc protected amino acid used directly for the next step. ${ }^{1-2}$

Esterification: The free aminoacid (1 equiv.) was added to methanol and to this was added thionyl chloride (1.5 equiv.) slowly at $0^{\circ} \mathrm{C}$. Removed the ice bath and refluxed the reaction mixture for 4 h . Methanol was removed, and the white ppt was washed with diethylether to remove the excess thionyl chloride to afford the methyl ester amino acid as white solid. This compound also used directly for the next step. ${ }^{1-2}$

Coupling of two amino acids: The Boc protected aminoacid (1 equiv.) was dissolved in dry dichloromethane and small amount of DMF. 1.1 equiv. of HOBt and 1.1 equiv. of EDC were added and stirred the reaction mixture at $0^{\circ} \mathrm{C}$ for 2 h .

In another round bottom flask, methyl ester of amino acid (1.1 equiv.) was taken and dissolved in DCM. To this solution was added 5 equiv. of triethylamine and stirred for 30 min. This solution was added to the activated ester at $0{ }^{\circ} \mathrm{C}$ slowly and the continued the stirring at $27^{\circ} \mathrm{C}$ for 16 h . The completion of reaction mixture was followed by TLC. The reaction mixture was added to NaHCO_{3} solution and extracted with DCM 2 times. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. filtered and concentrated in vacuo. The crude product was subjected to column chromatography to afford the desired compound. ${ }^{3}$

Saponification of Esters: The methyl ester of peptide was saponified by dissolving the ester in MeOH and added to this 1 N NaOH and $\mathrm{MeOH}(1: 1)$ slowly at $0{ }^{\circ} \mathrm{C}$. MeOH and NaOH should be in the ratio of 2:1. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 mins , the completion of reaction mixture was followed by TLC. The reaction mixture was washed with diethylether 2 times. And then the aqueous layer was acidified with KHSO_{4} solution and extracted the compound with ethyl acetate. Washed the organic layer with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford the saponified product and used the compound directly for the coupling with free amine containing amino acid ester. ${ }^{4}$

Boc-Deprotection: The Boc group of the peptide was removed by treating it with 1:1 ratio of DCM and TFA for 2 h . TFA was removed by high vacuum to afford the free amine containing peptide. ${ }^{5-6}$

Figure S1. Reaction of the selenocysteine dipeptide 9d with iodine in methanol and a subsequent reaction with sodium borohydride and iodoacetic acid to produce the alkylated derivative 21.

Figure S2. (A) UV spectrum of sec derivative 22 at 366 nm UV light in ACN and phosphate buffer pH 7 (1:1), before irradiation and after irradiation for 2 h . (B) ESI-MS of compound $\mathbf{2 2}$ after irradiation at 366 nm for 30 min . (C) ESI-MS of compound 22 after irradiation at 366 nm for 2 h .

HPLC Analysis:

All the compounds are subjected to HPLC analysis to see their purity. The selenium coupled compounds of dipeptides and tripeptides were seen as a single peak even though they are diasteriomers. A C18 column was used and the mobile phase was 60% Acetonitrile and 40% water having 0.1% TFA. Flow rate was $1 \mathrm{~mL} / \mathrm{min}$.

Figure S3. HPLC chromatograms of compound $\mathbf{1 . 0}$ and 8.0.

Figure S4. HPLC chromatograms of compounds $\mathbf{5 a}$ and 9 a.

Figure S5. HPLC chromatograms of compounds $\mathbf{5 b}$ and $\mathbf{9 b}$.

Figure S6. HPLC chromatograms of compounds $\mathbf{5 c}$ and $\mathbf{9 c}$.

Figure S7. HPLC chromatograms of compounds $\mathbf{5 d}$ and $9 \mathbf{d}$.

Figure S8. HPLC chromatogram of compounds $\mathbf{5 e}$ and $9 \mathbf{e}$.

Figure S9. HPLC chromatogram of compounds 17 and 19.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1}$ [Boc-Dha-OMe]

Boc-Dha-OMe

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1}$ [Boc-Dha-OMe]

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8}$ [Boc-Sec(pMob)-OMe]

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8}$ [Boc-Sec(pMob)-OMe]
Boc-U(pmb)-OMe

Figure S14. ${ }^{77}$ Se NMR spectrum ($76.29 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8}$ [$\left.\mathrm{Boc}-\mathrm{Sec}(\mathrm{pMob})-\mathrm{OMe}\right]$

Boc-Gly-Dha-OMe

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 5 (Boc-Gly-Dha-OMe]

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum (100.56 MHz, CD ${ }_{3} \mathrm{OD}$) of compound 5 a [Boc-Gly-Dha-OMe]

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9a [Boc-Gly-Sec(pMob)-OMe]

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum (100.56 MHz, CDCl_{3}) of compound 9a [Boc-Gly-Sec(pMob)-OMe]

B-Gly-U(pmb)-OMe

Figure S19. ${ }^{77}$ Se NMR spectrum ($76.29 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9a [Boc-Gly-Sec(pMob)-OMe]

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 b}$ [Boc-Ala-Dha-OMe]

$\stackrel{\stackrel{5}{\dot{\circ}}}{\stackrel{\text { T }}{1}}$
-109.26

B-Ala-Dha-OMe

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 b}$ [Boc-Ala-Dha-OMe]

B-a-U-OMe(pmb)

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 9b [Boc-Ala-Sec(pMob)-OMe]

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{9 b}$ [Boc-Ala-Sec(pMob)-OMe]

Figure $\mathbf{S 2 4} .{ }^{77}$ Se NMR spectrum ($76.29 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9 b [Boc-Ala-Sec(pMob)-OMe]

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $5 \mathbf{c}$ [Boc-Leu-Dha-OMe]

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 c}$ [Boc-Leu-Dha-OMe]

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9c [Boc-Leu-Sec(pMob)-OMe]

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9c [Boc-Leu-Sec(pMob)-OMe]

Boc-Leu-U(pmb)-OMe

Figure S29. ${ }^{77} \mathrm{Se}$ NMR spectrum (76.29 MHz, CDCl_{3}) of compound 9c [Boc-Leu-Sec(pMob)-OMe]

B-Ile-Dha-OMe

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 d}$ [Boc-lle-Dha-OMe]

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 d}$ [Boc-Ile-Dha-OMe]

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9d [Boc-Ile-Sec(pMob)-OMe]

Figure S33. ${ }^{13} \mathrm{C}$ NMR spectrum (100.56 MHz, CDCl_{3}) of compound 9d [Boc-Ile-Sec(pMob)-OMe]

Figure S34. ${ }^{77}$ Se NMR spectrum ($76.29 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9d [Boc-Ile-Sec(pMob)-OMe]

B-Phe-Dha-OMe

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5 e [Boc-Phe-Dha-OMe]

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 e}$ [Boc-Phe-Dha-OMe]

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9 e [Boc-Phe-Sec(pMob)-OMe]

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{9 e}$ [Boc-Phe-Sec(pMob)-OMe]

Figure S39. ${ }^{77}$ Se NMR spectrum ($76.29 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9 e [Boc-Phe-Sec(pMob)-OMe]

Boc-GSH(Dha)-OMe

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 13

BGSHOMeDha

Figure S41. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 3}$

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound $\mathbf{1 8}$ [Boc-GSeH(pMob)-OMe]

Boc-GSH(pmb)-OMe

Figure S43. ${ }^{13} \mathrm{C}$ NMR spectrum (100.56 MHz, CD ${ }_{3} \mathrm{OD}$) of compound 18 [Boc-GSeH(pMob)-OMe]

Boc-GSH(SepMB)-OMe

Figure S44. ${ }^{77}$ Se NMR spectrum (76.29 MHz, CD ${ }_{3} \mathrm{OD}$) of compound 18 [Boc-GSeH(pMob)-OMe]

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 17 [Boc-Leu-Ala-Dha-OMe]

B-Leu-Ala-Dha-OMe

Figure S46. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 7}$ [Boc-Leu-Ala-Dha-OMe]

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19 [Boc-Leu-Ala-Sec(pMob)-OMe]

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19 [Boc-Leu-Ala-Sec(pMob)-OMe]

Boc-Leu-Ala-U(pmb)-OMe

Figure S49. ${ }^{77}$ Se NMR spectrum ($76.29 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19 [Boc-Leu-Ala-Sec(pMob)-OMe]

Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 2}$ [Boc-Sec(oNB)-OMe]

Figure S51. ${ }^{13} \mathrm{C}$ NMR spectrum ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 2}$ [Boc-Sec(oNB)-OMe]

Boc-U(ONB)-COOMe

Figure S52. ${ }^{77}$ Se NMR spectrum ($76.29 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 2}$ [Boc-Sec(oNB)-OMe]

Figure S53. ESI- Mass Spectrum of compound $\mathbf{8}$ [Boc-Sec(pMob)-OMe]

Figure S54. ESI- Mass spectrum of compound 9c [Boc-Leu-Sec(pMob)-OMe]

Figure S55. ESI- Mass spectrum of compound $\mathbf{1 3}$ [pMob-Selenoglutathione]

Figure S56. ESI- MS of compound $\mathbf{1 8}$ [pMob-Selenoglutathione]

Figure S57. ESI- Mass Spectrum of compound 19 [Boc-Leu-Ala-Sec(pMob)-OMe]

Figure S58. ESI- Mass Spectrum of compound $\mathbf{2 2}$ [Boc-Sec(oNB)-OMe]

References:

1. S. Ray, A. K. Das, M. G. B. Drew, A. Banerjee, Chem. Commun., 2006, 4230-4232.
2. A. Isidro-Llobet, M. A' Ivarez, F. Albericio, Chem. Rev., 2009, 109, 2455-2504
3. M. E. Mahoney, A. Oliver, Ó Einarsdóttir, J. P. Konopelski, J. Org. Chem., 2009, 74, 8212-8218.
4. M. Mobli, A. D. de Araújo, L. K. Lambert, G. K. Pierens, M. J. Windley, G. M. Nicholson, P. F. Alewood, G. F. King, Angew. Chem. Int. Ed., 2009, 48, 9312 -9314
5. B. J. Bhuyan, G. Mugesh, Org. Biomol. Chem., 2012, 10, 2237-2247.
6. B. J. Bhuyan, G. Mugesh, Org. Biomol. Chem., 2011, 9, 5185-5192.
