Supporting Information

A colorimetric and ratiometric fluorescent sensor for sequentially detecting Cu²⁺ and arginine based on coumarin-rhodamine B derivative and its application for bioimaging

Shuai Wang,^a Haichang Ding,^b Yuesong Wang,^a Congbin Fan,^a Gang Liu,^{*a} Shouzhi Pu^{*a}

^a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.

^b Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China.

*Corresponding author: liugang0926@163.com (G. Liu), pushouzhi@tsinghua.org.cn (S.Z. Pu)

Contents

Fig. S1. Competition experiments of **1** in the presence of different metal ions (10.0 eq., black bar) and subsequent addition of Cu²⁺ (3.0 eq., red bar) in CH₃CN-H₂O (9/1, v/v). (A) Absorption changes (B) Fluorescence intensity ratio changes (I_{615}/I_{490}), $\lambda_{ex} = 350$ nm, slit: 5 nm/5 nm.

Fig. S2. Nonlinear curve fitting of the absorbance titration data from 0 to 40 μ M for **1** with Cu²⁺ at 564 nm in CH₃CN–H₂O (9/1, v/v) solutions at room temperature.

Fig. S3. Limit of detection (LOD) of **1** towards Cu²⁺ by UV-vis method.

Fig. S4. Fluorescent intensities ratio (I_{615}/I_{490}) change of 1 towards different concentrations of Cu^{2+} from 0 to 60 μ M, R = 0.99845.

Fig. S5. Limit of detection (LOD) of 1 towards Cu²⁺ by fluorescence method.

Fig. S6. Spectroscopic changes of **1**-Cu²⁺ induced by the addition of various amino acids (50.0 eq.) in CH₃CN-H₂O (9/1, v/v) solutions. (A) Absorption spectral changes. (B) Fluorescence emission intensity changes. (C) The color image set upon the addition of various amino acids. (D) The fluorescence image set upon the addition of various amino acids. $\lambda_{ex} = 350$ nm.

Fig. S7. Competition experiments of **1**-Cu²⁺ in the presence of different amino acids (50 eq., black bar) and subsequent addition of Arg (30 eq., red bar) in CH₃CN-H₂O (9/1, v/v). (A) Absorption changes (B) Fluorescence intensity ratio changes (I₆₁₅/I₄₉₀), λ_{ex} = 350 nm, slit: 5 nm/5 nm.

Fig. S8. Nonlinear curve fitting of the absorbance titration data from 0 to 200 μ M for 1-Cu²⁺ complex towards different concentrations of Arg at 564 nm in CH₃CN–H₂O (9/1, v/v) solutions at room temperature. R² = 0.99714.

Fig. S9. Limit of detection (LOD) of the 1-Cu²⁺ complex towards Arg by UV-vis method.

Fig. S10. Fluorescent intensities ratio (I_{615}/I_{490}) change of 1-Cu²⁺ solution towards different concentrations of Arg (0-200 μ M). R² = 0.97889.

Fig. S11. Limit of detection (LOD) of the 1-Cu²⁺ complex towards Arg by fluorescence method.

Fig. S12. Normalized spectral overlap of fluorescence spectrum of coumarin (blue) and absorption spectrum of rhodamine B (pink) in CH_3CN-H_2O (9/1, v/v) solution.

Fig. S13. ¹H NMR spectrum of $\mathbf{1}$ in CD₂Cl₂.

Fig. S14. ¹³C NMR spectrum of 1 in CD₂Cl₂.

Fig. S15. The ESI-MS spectrum of 1.

Fig. S1.

Fig. S2.

Fig. S3.

Fig. S4.

Fig. S5.

Fig. S6.

Fig. S7.

Fig. S8.

Fig. S9.

Fig. S10.

Fig. S11.

Fig. S12.

Fig. S13.

Fig. S14.

Spectrum from 180308-36.wiff (sample 1) - Sample036, +TOF MS (100 - 2000) from 0.200 to 0.781 min

Fig. S15.