Supplementary material

Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery

performance

Zhilong Xu, Lei Fan*, Xiangyin Ni, Jie Han*, Rong Guo

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China

*E-mail address: fanlei@yzu.edu.cn (Lei Fan)

hanjie@yzu.edu.cn (Han Jie)

Figure S1. The TEM images of SiO_2 .

Figure S2. (a) The SEM images of SiO₂/SnO₂, (b) The EDS analysis of Sn/NPCFs-0.5, (c-f) EDS mappings of (d) Si, (e) Sn and (f) O

from panel c.

Figure S3. (a-b) The SEM images of Sn/NPCFs-0.2 and Sn/NPCFs-1.

Figure S4. The TEM images of (a) NPCFs; (b) Sn/NPCFs-0.2; (c) Sn/NPCFs-1.

Figure S5. Nitrogen adsorption-desorption isotherms (Inset is the corresponding pore size distribution.).

Sample	The best size of pores(nm)	BET surface area (m ² g ⁻¹)	volume of pores $(cm^{3}g^{-1})$	
NPCFs	3.30	40.99	0.2390	
Sn/NPCFs-0.2	3.97	43.95	0.2618	
Sn/NPCFs-0.5	Sn/NPCFs-0.5 4.05		0.9008	
Sn/NPCFs-1	4.03	155.4	0.6716	

Table S1. N ₂ sorption isotherms and t	the corresponding po	re size distribution	of NPCFs and Sn/NPCFs.
---	----------------------	----------------------	------------------------

Figure S6. The EDS analysis of Sn/NPCFs-0.5.

Figure S7. Charge and discharge curves of NPCFs with a current density of 500 mA $g^{\text{-}1}.$

Materials	Synthesis method	Electrochemical performance			Ref.
		Current density	Cycle number	Capacity retention	_
Sn	One-step reduction method	200 mA g ⁻¹	50	< 50 mAh g ⁻¹	[1]
Sn/C	Annealing	100 mA g ⁻¹	100	200 mAh g ⁻¹	[2]
Sn/Graphene 90 wt.% Sn	Microwave reaction	100 mA g ⁻¹	20	400 mAh g ⁻¹	[3]
Sn–C Composite	Calcination	100 mA g ⁻¹	100	450 mAh g^{-1}	[4]
CF/Sn SnO ₂ @C	Carbothermic reduction	100 mA g ⁻¹	50	657.6 mAh g ⁻¹	[5]
0.2 Sn-1200	Electrospinning and pyrolysis	70 mA g⁻¹	100	400 mAh g ⁻¹	[6]
Sn@C/C (I) nanofibers using flow ratio of 1:3	Electrospinning	50 mA g ⁻¹	50	456 mAh g ⁻¹	[7]
Sn−SnO₂/C composite nanofibers	Electrospinning composite nanofibers	400 mA g ⁻¹	10	390 mAh g ⁻¹	[8]
SCNF	Electrospinning	100 mA g^{-1}	10	550 mAh g ⁻¹	[9]
Sn- encapsulated carbon fibers	Electrospinning and carbonization	100 mA g ⁻¹	6	750 mAh g ⁻¹	This work
Sn- encapsulated carbon fibers	Electrospinning and carbonization	500 mA g ⁻¹	100	400 mAh g ⁻¹	This work

Table S2. Cycling performance and capacity of Sn/carbon nanomaterials reported in previous works

Figure S8. Electrochemical impedance spectra of the NPCFs, Sn/NPCFs-0.2, Sn/NPCFs-0.5, Sn/NPCFs-1.

Figure S9. (a) SEM image of the as-prepared Sn/NPCFs-0.5 electrode. (b) SEM, (c-d) TEM images of the Sn/NPCFs-0.5 after 5 cycles.

References

[1]. Y. Li, J. Shi and Y. Liang, Int. J. Electrochem. Sci., 2018, 13, 2366.

[2]. J. Lee, T. Hwang, J. Oh, J. M. Kim, Y. Jeon and Y. Piao, J. Alloys Compd., 2018, 736, 42.

[3]. F. R. Beck, R. Epur, D. Hong, A. Manivannan and P. N. Kumta, *Electrochim. Acta*, 2014, **127**, 299.

- [4]. J. Hassoun, G. Derrien, S. Panero and B. Scrosati, Adv. Mater., 2008, 20, 3169.
- [5]. J. Ding, W. Zhu, C. Liu, C. Ma, Y. Yang, H. Ji and G. Yang, J. Alloys Compd., 2018, 750, 220.
- [6]. A. Tolosa, M. Widmaier, B. Krüner, J. M. Griffin and V. Presser, *Sustain. Energ. Fuels*, 2018, 2, 215.
- [7]. X. Xia, X. Wang, H. Zhou, X. Niu, L. Xue, X. Zhang and Q. Wei, *Electrochim. Acta*, 2014, **121**, 345.
- [8]. D. Narsimulu, S. Vadnala, E. Srinadhu and N. Satyanarayana, *J. Mater. Sci.-Mater. El.*, 2018, 29, 11117.
- [9]. Y. Chen, D. Ge, J. Zhang, R. Chu, J. Zheng, C. Wu, Y. Zeng, Y. Zhang and H. Guo, *Nanoscale*, 2018, **10**, 17378.