Supplementary material

A general method to fabricate 3D net-like MoO₃/C composite and

porous C for Asymmetric Solid-State Supercapacitors

Yu Jiang^a, XueminYan^{a,*}, Yapeng Cheng^a, Yan Zhang^a, Wei Xiao^a, Lu Gan^c, Haolin

Tang b,*

^{*a*} College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou

434023, Hubei, China.

^b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China

Figure S1. TGA curve of the hydrogel at a heating rate of 10 C min⁻¹ under the nitrogen atmosphere.

Figure S2. CV curves of the MCs, MCs_1 , MCs_2 at the scan rate of 50 mV s⁻¹.

Figure S3. N_2 adsorption–desorption isotherms of the MCs. The inset picture corresponds to the BJH porous distribution of the MCs.

Figure S4. Nyquist plots of MCs and MoO₃. MoO₃ was fabricated by of decomposition of phosphomolybdic acidhydrate without presence of polymer matrix.

Figure S5. Cycling life test of the PC at a current density of 10 A g^{-1} .

Figure S6. Ragone plots of the obtained MCs.