Supporting Information

Silicon/nitrogen synergistically reinforced flame-retardant PA6 nanocomposites

with simultaneously improved anti-dripping and mechanical properties

Shuo Fan ^{ab}, Ruchao Yuan ^{ab}, Dequn Wu ^{*ab}, Xueli Wang ^c, Jianyong Yu ^c and Faxue Li ^{*ab}

^a College of Textiles, Donghua University, Shanghai 201620, China. E-mail:

fxlee@dhu.edu.cn.

^b Key Laboratory of Textile Science & Technology, Ministry of Education, College of

Textiles, Donghua University, Shanghai 201620, China.

^c Innovation Center for Textile Science & Technology, Donghua University, Shanghai

201620, China.

Corresponding Author

* Faxue Li: fxlee@dhu.eu.cn. Dequn Wu: dqwu@dhu.edu.cn. Tel.: 021-67798677

Sample	T _g (°C)	T _m (°C)	<i>T</i> _{5%} (°C)	<i>T</i> _{max1} (°C)	T _{max2} (°C)	Char residues (wt %)	X _c (%)
PA6	49	220	387	-	469	0.5	37.8
FR-PA6-6	49	210	389	-	466	1.6	46.7
FR-PA6-9	50	200	387	-	462	2.7	38.4
FR-PA6-12	48	189	390	-	468	3.8	35.3
FR-PA6-9/MCA-6	48	200	331	348	465	4.3	41.6
FR-PA6-9/MCA-8	47	200	334	348	465	3.2	45.6
FR-PA6-9/MCA-10	47	200	331	348	474	2.8	47.8
PA6/MCA-8	48	220	327	347	463	0.1	43.2
FR-PA6-6/MCA-8	48	210	336	348	463	1.0	54.5
FR-PA6-12/MCA-8	47	189	322	348	453	3.7	35.0

Table S1 DSC, TGA and XRD results of PA6, FR-PA6, PA6/MCA and FR-PA6/MCA nanocomposites

Table S2. Summary of tensile properties of PA6 and FR-PA6

Samples	σ (MPa) ^a	Yield point stress (MPa)	<i>ε</i> (%) ^b	E (MPa) ^c
PA6	64.4±0.2	67.6±0.3	88±1.2	887±2.5
FR-PA6-6	88.6±0.3	66.7±0.2	326±2.6	930±2.6
FR-PA6-9	83.5±0.1	58.7±0.2	368±3.2	893±2.8
FR-PA6-12	62.4±0.2	46.5±0.1	470±2.2	713±2.0

^a Tensile stress, ^b Elongation at break, ^c Young's modulus

R. Time (min)	m/z	Area%	Gas Compound ^a
1.44	44	8.97	CO ₂
1.56	54	6.91	
1.75	70	1.35	$\frown \frown \frown$
1.83	41	1.64	M
1.97	66	2.86	\square
5.53	84	0.25	°
6.76	95	0.62	~~~ ^N
6.98	97	0.76	∧ ∕ ∕ [™] N
12.70	113	71.01	O NH
16.54	171	0.26	~~ ^l t

Table S3. Possible structural assignments of PA6 decomposed under 700 $^{\rm o}{\rm C}$

^a Data from NIST11s.library.

R.Time (min)	m/z	Area%	Gas Compound ^a
1.44	44	37.02	CO ₂
1.85	41	2.07	N
1.99	66	2.97	
2.19	90	1.07	OH Si
4.67	200	0.27	
5.53	84	1.96	Ŷ
6.29	188	0.25	Si ^{-O} Si
6.82	95	0.89	
7.04	97	0.94	∧N
12.38	113	41.66	○ NH
16.54	171	0.87	

Table S4. Possible structural assignments of FR-PA6-9 decomposed under 700 °C

^a Data from NIST11s.library.

Table S5. Possible structural assignments of MCA decomposed at 700 °C

ipound ^a	Gas Compo	Area%	iin) m/z	R.Time (m
CO_2	CC	12.30	44	1.44
=NH ₂	HN==-	15.45	43	1.82
N NH ₂	H ₂ N N	36.96	126	16.27
NH ₂	N N	35.29	126	20.48

^a Data from NIST11s.library.

R.Time (min)	m/z	Area%	Gas Compound ^a
2.40	43	19.03	Therease Contract of States
12.49	113	51.8	о Мн
16.59	126	19.99	
17.07	170	1.14	
23.97	388	0.76	~~~~ ^{\$\$\$\$\$\$\$\$} \$\$

Table S6. Possible structural assignments of FR-PA6-9/MCA-10 decomposed under350 °C

^a Data from NIST11s.library.

Table S7. Possible structural assignments of FR-PA6-9/MCA-10 decomposed under 700 °C

R.Time (min)	m/z	Area%	Gas Compound ^a
1.44	44	6.97	CO ₂
1.76	70	0.98	$\frown \frown \frown$
2.04	68	1.25	$\rangle =$
2.88	115	0.27	SI N C O
4.33	200	0.19	Si O Si
5.46	222	3.93	si o si
6.81	95	3.79	M N
7.03	97	1.39	∧N
12.71	113	75.63	NH
18.26	142	2.92	ОН

^a Data from NIST11s.library.

		Ignition time	First dripping	Self-extinguishing
PA6	Os	85	15s	30s
FR-PA6-9	Os	11s	155	21s
PA6/MCA-6	Os Contraction of the second s	10s	18s	30s
FR-PA6-9 /MCA-6	0s	7s	135	14s
FR-PA6-9 /MCA-10	Os 1st	10s	11s 2nd	215

Fig.S1 Real-time combustion of PA6, FR-PA6, PA6/MCA and FR-PA6-9/MCA in air atmosphere