Journal Name

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Supplementary Information

Roland Schierholz^a *, Daniel Kröger^a, Henning Weinrich^{a,b}, Hermann Tempel^a, Hans Kungl^a, Joachim Mayer^{c,d} and Rüdiger-A. Eichel^{a,b}

^{a.} Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

^b Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany ^c Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons,

Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

^{d.} Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen, Germany

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

Table S1: Spacing of lattice planes d_{hkl} in real space, length of corresponding diffraction vector g_{hkl} in reciprocal space and the relative intensity for graphite powder calculated from ICSD-file 76767 up to hkl = 006. Also given is the azimuthal position of the diffraction vector assuming a single crystal of graphite with (002) planes parallel to the fiber axis and the electron beam. The last two columns represent, if the corresponding intensity is expected to increase \uparrow , stay constant - or decrease \downarrow if extracted from an azimuthal range $\pm 20^{\circ}$ perpendicular \vdash or parallel || to the fiber axis.

h	k	Ι	d _{hki} [pm]	g _{hkl} [1/nm]	I _{rel} [%]	m	azimut [°]			I⊦	Ι _{II}
Zone [0-10]											
0	0	2	336	2.985	100	2	90		270	1	↓
1	0	0	213	4.695	3.5	6	0		180	\downarrow	\uparrow
1	0	1	203	4.926	19.4	1 2	342	18	162	Ļ	↑ (
1	0	2	180	5.587	3.4	1 2	328	32	148	Ļ	ſ
0	0	4	168	5.952	7.7	2	90		270	1	\downarrow
1	0	3	154	6.494	6.5	1 2	316	44	136	-	-
1	0	4	132	7.576	0.9	1 2	308	52	128	-	-
1	0	5	113.6	8.807	2.0	1 2	302	58	122	-	-
0	0	6	111.9	8.942	1.6	2	90		270	1	\downarrow
Zone [1-10]											
0	0	2	336	2.985	100	2	90		270	1	↓
0	0	4	168	5.952	7.7	2	90		270	1	\downarrow
1	1	0	123	8.130	6.7	6	0		180	Ļ	\uparrow
1	1	2	115.7	8.659	10.6	1 2	328	32	148	Ļ	↑
0	0	6	111.9	8.942	1.6	2	90		270	1	↓ ↓

Journal Name

ARTICLE

Figure S1: SEM image of a fiber mat oxidatively stabilized at 250 °C, which was the starting material for the *in situ* experiment.

Figure S2: Distribution of fiber diameters of oxidatively stabilized fiber mats measured from SEM micrographs.

Figure S3: Raman spectra measured *ex situ* on fiber mats after oxidative stabilization at 250 °C and carbonized in a tube furnace under Argon flow for 10 h at 600 °C, 800 °C and 1000 °C.

ARTICLE

Figure S4: Intensity ratios of the D-band (\approx 1350 cm⁻¹) over the G-band (\approx 1550 cm⁻¹) calculated using the peak area (red circles) and just the maximum intensity (balck squares).