Supporting Information

Preparation of Mesoporous ZnAl₂O₄ Nanoflakes by Ion Exchange from Na-Dawsonite Parent in the Presence of Ionic Liquid

TongIl Kim^{a,b}, HakSung Yun^a, GwangBok Han^a, Jiabiao Lian^{b,c}, Jianmin Ma^{b,d}, Xiaochuan Duan^{b,e}, Lianjie Zhu*^f and Wenjun Zheng*^b

^a Institute of Chemistry and Biology, University of Science, Unjong District,

Pyongyang, D. P. R. Korea

^b Department of Materials Chemistry, Key Laboratory of Advanced Energy Materials

Chemistry and TKL of Metal and Molecule-Baced Material Chemistry, Collage of

Chemistry, Nankai University Tianjin, 300071, P. R. China

^c Institute for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
^d School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
^e Pen-Tung Sah Institute of Micro-Nano Science and Technology of Xiamen University, Xiamen, 361005, P. R. China
^f School of Chemistry & Chemical Engineering, Tianjin University of Technology,

School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

* Corresponding Authors: Wenjun Zheng, E-mail: <u>zhwj@nankai.edu.cn (W. Zheng);</u> Lianjie Zhu, E-mail: <u>zhulj@tjut.edu.cn</u> (L. Zhu).

Figure S1. (a) FTIR and (b) EDX spectra of the $ZnAl_2O_4$ product obtained after calcined at 700 °C.

Figure S2. FE-SEM image of the Na-Dw product prepared by hydrothermal method at 120 °C for 12 h.

Figure S3. FE-SEM image of the product obtained by ion exchange from the Na-Dw in the absence of ILs at 50 °C for 10 h.

Figure S4. XRD patterns of the samples obtained by calcining the precursors at 700 $^{\circ}$ C for 2 h. The precursors were prepared by using different mole ratios of Zn²⁺:Na-Dw: (a) 1:2, (b) 1:1 and (c) 2:1.

When the mole ratio is 1:2, pure $ZnAl_2O_4$ crystals can be obtained. When it is 2:1, however, ZnO phase becomes the main crystal phase of the product.

Figure S5. FE-SEM images of the samples obtained using different mole ratios of Zn^{2+} :Na-Dw: (a) 1:2, (b) 1:1 and (c) 2:1.

Scheme S1. Schematic diagram of hydrotalcite-like $Zn_6Al_2(OH)_{16} \cdot (CO_3) \cdot 4H_2O$ crystal structure^{**}.

※ Pedro Ivo R. Moraes, Sergio R. Tavares, Viviane S. Vaiss, and Alexandre A. Leitao. Ab Initio Study of Layered Double Hydroxides Containing Iron and Its Potential Use as Fertilizer *J. Phys. Chem. C* 2016, **120**, 9965-9974.