Supporting Information

Design of efficient thermally activated delayed fluorescence blue host

for high performance solution-processed hybrid white organic light

emitting diodes

Xinxin Ban,^{*ab} Feng Chen,^a Yan Liu,^a Jie Pan,^a Aiyun Zhu,^a Wei Jiang^{*b} and Yueming Sun^b ^a Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu, 222005, China ^b School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China

E-mail: <u>banxx@hhit.edu.cn</u> (X. X. Ban), <u>jiangw@seu.edu.cn</u> (W. Jiang)

Scheme 1. Synthetic route of OCzBN and Cz-OCzBN.

Fig. S1 TGA curve of (a) OCzBN and (b) Cz-OCzBN recorded at a heating rate of 10 °C min⁻¹; Inset: DSC trace recorded at a heating rate of 10 °C min⁻¹.

Fig. S2 The XRD spectra of solid state OCzBN and Cz-OCzBN.

Fig. S3 Cyclic voltammogram of OCzBN and Cz-OCzBN in CH₂Cl₂ solution.

Fig. S4 Photoluminescence spectra of (a) OCzBN and (b) Cz-OCzBN films before and after applying delay time.

Fig. S5. The absorption spectrum of PO-01 and the emission spectra of TADF blue hosts.

Fig. S6. The transient PL decay curves of the films excited by 280 nm laser and detected at 480 nm, (a) OCzBN and OCzBN:0.6% PO-01 and (b) Cz-OCzBN and Cz-OCzBN:0.6% PO-01.

Table S1	Transient	decay	characteristics	of the films.
----------	-----------	-------	-----------------	---------------

	$\tau_{S}(ns)$	$k_{s} (s^{-1})$	$k_{ET}(s^{-1})$	$\eta_{ET}(\%)$
OCzBN	26	3.84×10 ⁷	_/_	_/_
OCzBN:1%PO-01	14	7.14×10^{7}	3.29×10^{7}	46.1
Cz- OCzBN	32	3.12×10^{7}	_/_	_/_
Cz- OCzBN: 1%PO-01	11	9.09×10 ⁷	5.96×10^{7}	65.6

Fig. S7. (a) Current density-voltage-luminance (J-V-L) characteristics; (b) External quantum efficiencies versus current density plots of the blue devices.

Fig. S8. (a) Photoluminescence (PL) spectra of OCzBN and Cz-OCzBN; (b) Electroluminescence (EL) spectra of OCzBN and Cz-OCzBN.

Fig. S9 Lifetimes of the hybrid WOLEDs with OCzBN and Cz-OCzBN as bule host measured with an initial brightness of 1000 cd m⁻².

Fig. S10. ¹H-NMR spectrum of OCzBN.

Fig. S11. ¹³C-NMR spectrum of OCzBN.

Fig. S12. ¹H-NMR spectrum of Cz-OCzBN.

Fig. S13. ¹³C-NMR spectrum of Cz-OCzBN.