Catalytic Decarbonylation of Stearic Acid to Hydrocarbons

over Activated Carbon-supported Nickel

Zihao Zhang^a, Zhe Chen^a, Hao Chen^a, Xin Gou^a, Kequan Chen^b, Xiuyang Lu^a,

Pingkai Ouyang^{a,b}, Jie Fu^a*

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education,

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou

310027, China

 ^b State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China The band located around 3425 cm⁻¹ corresponds to v(O-H) vibrations in hydroxyl group. The v(O-H) vibrations in esters, ether or phenol groups cause the bands between 900-1300 cm⁻¹. The bands located around 663 and 1569 cm⁻¹ ascribes to γ (O-H) vibration and v(C=C) vibration in aromatics group respectively.¹ Therefore, the main surface functional groups associated with Ni/AC were hydroxyl, esters, aromatics groups.

Figure S1. Fourier transform infrared spectra of Ni/AC

Figure S2. H₂-TPR result of AC

Figure S3. N2 adsorption-desorption isotherms of four Ni-based catalysts

1. A. C. Lua and T. Yang, J. colloid interf. sci., 2004, 274, 594-601.