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We derived an elasto-hydrodynamic model of a filament driven by active force with an

arbitrary force profile. The governing equations in dimensionless form is

θt = −θssss − Λθss −
(

1 +
1

γ

)
Λsθs + 3

(
1 +

1

γ

)
θ2sθss +

1

γ
f‖θs +

∂f⊥
∂s

, (1a)

Λss − γθ2sΛ = 3θ2ss + (3 + γ)θsθsss − γθ4s +
∂f‖
∂s
− γf⊥θs. (1b)

The boundary conditions for the filament with free-ends are given by the moment- and

force-free conditions at both ends s = 0 and s = 1, leading to

θs(0) = θss(0) = θs(1) = θss(1) = 0, (2a)

Λ(0) = Λ(1) = 0. (2b)

We consider a force at s = sp acting along the local tangential direction, with force profile

given by a Dirac delta function,

f‖ = fpδ(s− sp), f⊥ = 0. (3)

We discretize the arc length s uniformly into N segments and apply the second-order central

difference formulae for all the derivatives of θ and Λ, in the bulk,

(Xs)j =
1

2∆s
(−Xj−1 +Xj+1), (4a)

(Xss)j =
1

∆s2
(Xj−1 −Xj +Xj+1), (4b)

(Xssss)j =
1

∆s4
(Xj−2 − 4Xj−1 + 6Xj − 4Xj+1 +Xj+2), (4c)

where ∆s = 1/N , j = 2, 3...N , and X represents either θ or Λ. At the boundaries, the

discretization is

(Xs)1 =
1

2∆s
(−3X1 + 4X2 −X3), (5a)

(Xss)1 =
1

∆s2
(2X1 − 5X2 + 4X3 −X4), (5b)

(Xs)N+1 =
1

2∆s
(3XN+1 − 4XN +XN−1), (5c)

(Xss)N+1 =
1

∆s2
(2XN+1 − 5XN + 4XN−1 −XN−2). (5d)
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FIG. 1. Left: Real part of dominant eigenvalues when sp = 0.4, with regularization coefficient

ε = 0.01− 0.05. Right: Regularized Dirac delta function with ε = 0.01− 0.05.

At each time step, we first calculate the tension Λ from (1b), then march (1a) in time with

a modified Crank-Nicolson method. We treat the linear terms implicitly and the nonlinear

terms explicitly. At time step k, the discrete equations are given by

Λk
ss − γ

(
θks
)2

Λk = 3(θkss)
2 + (3 + γ)θksθ

k
sss − γ(θks )

4 + fp
∂δ(s− sp)

∂s
(6a)

θk+1 − θk

∆t
= −1

2

(
θkssss + θk+1

ssss

)
− 1

2

[
Λk
(
θkss + θk+1

ss

)]
−1

2
(1 + γ−1)

[
Λk
s

(
θks + θk+1

s

)]
+

3

2
(1 + γ−1)

[(
θks
)2 (

θkss + θk+1
ss

)]
+

1

2γ
fpδ(s− sp)

(
θks + θk+1

s

)
. (6b)

We use N = 100 in our simulations, the time step is around 10−4. To avoid the singularity,

the Dirac delta function is regularized using the regularization function

δε(x) ≈ 1√
2πε

e
− x

2

2ε2 . (7)

In Fig. 1, we calculate the eigenvalues for sp = 0.4 (shown in Fig. 5 of the main document)

with regularization coefficient ε = 0.01−0.05. Clearly, the instability features are not affected

qualitatively by the exact value of ε. In the main document, we set ε = 0.01 throughout.

We next choose a finer discretization N = 200 with ε = 0.01. The results show the same

level of accuracy, see Fig. 2.

2



100 200 3000

-1000

0

1000

FIG. 2. Dominant eigenvalues when sp = 0.4, with regularization coefficient ε = 0.01. Two sets of

line overlap, with number of discretization N = 100 and 200 respectively.
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