Supporting information

Polyamine-induced, chiral expression from liquid crystalline peptide nanofilaments to long-range ordered nanohelices

Yuefei Wang,^{†,§} Xin Yang,[†] Jiahui Wang,[†] Wei Qi,^{*,†,‡,§} Xuejiao Yang,[†] Xiao Liu,[†] Qiguo Xing,[†] Rongxin Su,^{†,‡,§} Zhimin He[†]

[†]State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.

[‡] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China.

[§]Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China.

*qiwei@tju.edu.cn

1. Supporting figures

Fig. S1 a) TEM images showing the nanofilaments self-assembled by Fmoc-FF peptide in 50 mM Tris-HCl buffer at pH 8.8; b) Schematic illustration showing the columnar packing of the nanofilaments.¹

Fig. S2 TEM images showing the (a) loose-packed fibrous bundles and (b) well-defined nanohelices formed after the incubation of spermidine into the liquid-crystalline peptide solution at 60 s and 6 h, respecively.

Fig. S3 a-d) TEM (a) and SEM (b-d) images showing the very slow structural transition of nanofilaments into nanoribbons after the incorporation of spermidine into the peptide solutions at 10 °C. Only a small amount of nanohelices were formed after incubation for 24 h. e-f) SEM images showing the nanohelices formed after the incorporation of spermidine into the peptide solutions at 37 and 50 °, respectively. Homogenous nanohelices could be formed just after incubation for 1 min.

Fig. S4 Macroscopic photographic images showing the peptide solutions after the incorporation of various polyamines bearing increasing number of positive charges. The most left image is a 10 mM Fmoc-FF peptide solution (50 mM Tris-HCl, pH 8.8) incubated in a glass vial. The peptide/polyamine mixture solutions contain 5 mM Fmoc-FF, 25 mM Tris-HCl and 5 mM polyamines with a pH of 8.6 at 20 °C.

Fig. S5 Transmission electron microscopy (TEM) images showing the condensation behavior of the peptide nanofilaments by using 5 mM and 25 mM monovalent ammonium¹⁺ cations, respectively. The mixture solutions contain 5 mM Fmoc-FF, 25 mM Tris-HCl with a pH of 8.6 at 20 °C.

Fig. S6 TEM (a-c) and SEM (d-f) images showing the condensation of peptide nanofilaments into fibrous bundles and twisted nanoribbons by using the divalent putrecine²⁺ cations at various concentrations. The mixture solutions contain 5 mM Fmoc-FF, 25 mM Tris-HCl with a pH of 8.6 at 20 °C.

Fig. S7 A high-magnification TEM image showing the transformation of peptide nanofilaments into fibrous bundles and twisted nanoribbons by using 10 mM divalent putrecine²⁺ cations. The mixture solutions contain 5 mM Fmoc-FF, 25 mM Tris-HCl with a pH of 8.6 at 20 °C.

Fig. S8 SEM images showing the condensation of peptide nanofilaments into twisted nanoribbons by using the trivalent spermidine³⁺ cations at various concentrations. The mixture solutions contain 5 mM Fmoc-FF, 25 mM Tris-HCl with a pH of 8.6 at 20 °C.

Fig. S9 SEM images showing the condensation of the peptide nanofilaments by using the tetravalent spermine⁴⁺ cations at various concentrations. Twisted nanoribbons can be formed using 1 or 2.5 mM spermine⁴⁺ cations. However, by increasing the concentration up to 5 mM, the twisted nanoribbons become unstable, which transformed spontaneously into large microcrystals after the incubation for 12 h. The mixture solutions contain 5 mM Fmoc-FF, 25 mM Tris-HCl with a pH of 8.6 at 20 °C.

Figure S10. Phase diagram of the condensation of the peptide nanofilaments as a function of the polyamine charge number and total amine concentration. Blue circles correspond to repulsive nanofilaments; blue filled circles correspond to flat nanoribbons or giant fibrous bundles; red stars represent twisted nanoribbons; black squares represent large microcrystals. The black dashed curve denotes the critical concentration (C_c) required to induce the bundling and twisting of the nanofilaments into homogeneous twisted nanoribbons.

Figure S11. Zeta-potential of the peptide solutions (5 mM Fmoc-FF, 25 mM Tris-HCl, pH 8.6, 20 °C) in the presence of various polyamines as a function of the charge number of the polyamines. The concentration of the polyamines is 5 mM (black curve) and 10 mM (blue curve), respectivley.

Polyamines	pKa
Putrescine	10.80, 9.63
Spermidine	10.95, 9.98, 8.56
spermine	10.94, 10.12, 9.04, 7.97

Table S1 pKa values of the polyamines determined by Palmer at al. using potentiometric titration.²

2. References

- Wang, Y.; Qi, W.; Wang, J.; Li, Q.; Yang, X.; Zhang, J.; Liu, X.; Huang, R.; Wang, M.; Su, R. Columnar Liquid Crystals Self-Assembled by Minimalistic Peptides for Chiral Sensing and Synthesis of Ordered Mesoporous Silica. *Chem. Mater.* **2018**, *30*, 7902-7911.
- (2) Palmer, B.N., Powell, H.K.J. Polyamine complexes with seven-membered chelate rings: complex formation of 3-azaheptane-1,7-diamine, 4-azaoctane-1,8-diamine (spermidine), and 4,9-diazadodecane-1,12-diamine (spermine) with copper (II) and hydrogen ions in aqueous solution. *J. Chem. Soc. Dalton* **1974**, 19, 2089–2092.