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1 Comparison of preferential orientations for RD and RC
Figs. S1 and S2 display the probability of finding particles in systems of rhombic dodecahedra (RD) or rhombicuboctahedra
(RC) in specific orientations as a function of density. The effect of RD having only the 12 FCC-relevant bonding facets
vs. RC having an additional 14 non-bonding facets can be seen in these plots. For RC, the non-bonding facets lead to
the existence of additional orientations (the ‘63° defect’ orientations in Fig. S2) that are incommensurate with the oFCC
arrangement, but that occur more often in the pFCC than would be expected from a random set of orientations. For RD,
we are unable to find such an orientation that preferentially exists in the pFCC but not in the oFCC crystal through simple
geometric reasoning.

Fig. S1: A Examples of the three types of orientations that we distinguish for RD. We classify whether a particle fits into one of these
categories if its orientation is within a 15° cutoff. ‘Aligned’ refers to particles with the orientation that occurs in the densest packing. ‘45°
defect’ refers to particles rotated by 45° about one of the three principal (4-fold) axes of the particle relative to the ‘aligned’ orientation.
‘56° defect’ refers to orientations in which a 3-fold vertex has replaced a 4-fold vertex relative to the ‘aligned’ orientation. (B) The
probability of finding these different orientations as a function of density. ‘Unlabeled’ refers to all particles whose orientations do
not fit within the 15° cutoff of these specific orientations. The dotted horizontal lines signify the probability of finding the different
orientations in a random distribution. For RD, only the ‘aligned’ orientations appear more frequently than would be expected in a
random distribution. At φ = 0.47, the increase in probability for ‘aligned’ particle orientations corresponds to the transition from a fluid
to the pFCC crystal. (C) An example snapshot of a system at φ = 0.65 with the particles colored by orientation.
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Fig. S2: (A) Examples of the three types of orientations that we distinguish for RC. We classify whether a particle fits into one of
these categories if its orientation is within a 15° cutoff. ‘Aligned’ refers to particles with the orientation that occurs in the densest
packing. ‘45° defect’ refers to particles rotated by 45° about one of the three principal (4-fold) axes of the particle relative to the
‘aligned’ orientation. ‘63° defect’ orientations can be attained via two separate 45° rotations about separate axes. (B) The probability of
finding these different orientations as a function of density. ‘Unlabeled’ refers to all particles whose orientations do not fit within the 15°
cutoff of these specific orientations. The dotted horizontal lines signify the probability of finding the different orientations in a random
distribution. At φ = 0.475, there is an increase in probability for ‘aligned’ and ‘63° defect’ corresponding to the transition from a fluid to
the pFCC crystal. Below a density φ = 0.67, ‘63° defect’ orientations occur more frequently in a system of RC than would be the case in
a random distribution of orientations. (C) An example snapshot of a system at φ = 0.65 with the particles colored by orientation.

2 Coexistence of pFCC and BCT phases
We compute the equation of state in the vicinity of the pFCC-to-BCT transition for systems sizes N = 256, 2048, & 16384
to confirm that the height of the Mayer-Wood loop decreases with system size. These results are shown in Fig. S3(A). A
Mayer-Wood loop appears as a result of coexistence between the two phases1. Figs. S3(B & C)) show coexistence behavior
based on local density for two different system sizes of TC. Coexistence of the pFCC and BCT crystals is identified when
there are two distinct peaks in the local density of a system. These results help confirm that the transition in Fig. 3 is of
first order.

3 No continuous phase transition in RC systems
The equation of state for RC shows a distinctive near-flattening in the density range 0.68 < φ < 0.73 (see main text). We
have performed simulations at various system sizes to show that this feature does not correspond with a higher order
phase transition. In a second-order phase transition, we expect to see discontinuities in a derivative of F , the free energy2.
In an NVT ensemble, wherein P =−( ∂F

∂V ), the bulk modulus K is a second-order derivative:

K =−V
∂P
∂V

=V
∂ 2F
∂V 2 . (1)

Fig. S4 shows the bulk modulus plotted against density for N = 256, 864, & 16384. We do not find any change in the bulk
modulus as a function of system size. If there were a critical phenomenon associated with a higher order phase transition,
we would expect to see divergence as the system approached the thermodynamic limit.
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Fig. S3: Evidence of a first-order phase transition for TC. (A) Equation of state from NVT simulations as a function of system size. The
decrease in the size of the Mayer-Wood loop with system size is the result of two-phase coexistence and comparatively fewer particles
being located at the interface. (B) For system sizes N = 2048, coexistence is only observed at a density of φ = 0.69. (C) For system sizes
N = 16384, the system will separate into the pFCC and BCT phases when the total density is 0.685 ≤ φ ≤ 0.695.

Fig. S4: Bulk modulus of RC for system sizes N = 256, 864, & 16384. The value of the bulk modulus does not depend on system size,
which indicates that there is no continuous phase transition.

4 Rotational Autocorrelation Function

The dynamics of particle translations is frequently characterized through the self-part of the intermediate scattering func-
tion, which is the Fourier transform of the van Hove function. To characterize rotational dynamics, we seek a similar
description. However, whereas the space of possible translations is described by R, the space of possible rotations is de-
scribed by the manifold of the rotation group, SO(3), requiring a different form of Fourier transform. For convenience,
we note that SU(2) is the double cover of SO(3), and that SU(2) has the group manifold S3, so we can study rotational
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dynamics by doing a Fourier transform in terms of spherical harmonics on S3. In particular we define

Fl(t) =
1
N ∑

i
∑

m1m2

Y ∗
lm1m2

(0)Ylm1m2(qi(0)†qi(t)) , (2)

where Ylm1m2 are spherical harmonics, qi is the orientation of particle i, and the summation extends over all particles and
the magnetic quantum numbers m1, and m2. In our calculations, we set l = 6.

To compute Fl(t) we used conventions for Ylm1m2 similar to those given in Ref.3. In particular, we embed S3 in R4 using
the complex coordinates ξ and ζ . For a unit quaternion defined by q = w+ xi+ y j + zk, we follow Ref.3 and use this
parameterization:

ξ = x+ iy,

ζ = z+ iw.
(3)

If we sum over all possible quantum numbers and use a = −(m1 − l
2 ) and b = −(m2 − l

2 ), we represent the spherical
harmonics by summing over all non-negative exponents for the following expression3:

Yl, l
2−a, l

2−b =

√
a!(l −a)!b!(l −b)!

l +1 ∑
k

(ξ ∗)kζ b−k(ζ ∗)a−k(−ξ )l+k−a−b

k!(l + k−a−b)!(a− k)!(b− k)!
. (4)

The results of computing the rotational autocorrelation function across a wide density range with constant rotational
move size are included in Fig. S5. As would be expected, the number of sweeps required for a particle to forget a past
orientation monotonically increases with density. With all shapes, two-step behavior in the rotational autocorrelation
function develops at high densities. This two-step behavior is indicative of cage-like rotational motion: at high densities,
particles can not readily make large rotations. Instead, they mostly make small rotations about an averaged orientation.
A set of rotational moves that takes particles outside of this cage can occur, but it happens infrequently at high densities.

For all shapes in this study, change in behavior of the rotational autocorrelation function shows connections with the
development of orientational order. For the TC (Fig. S5(A)), the development of two-step behavior coincides with the
pFCC-to-BCT phase transition. With the gradual order development displayed by the RD and RC (Fig. S5(B & C)), the
rotational autocorrelation function helps to confirm the development of strong orientational order and the loss of plastic
crystal behavior shown at lower densities. At low densities, the rotational autocorrelation function shows exponential
decay, and at higher densities with greater order the two-step behavior develops. The dynamic behavior of the PRC
suggests the orientational glass transition upon compression. For the highest density statepoint initialized with FCC order
in Fig. S5(D) (the dark green curve for φ = 0.725), there is clear two-step behavior in the rotational autocorrelation
function suggesting caged motion and the beginnings of dynamical arrest in rotational motion.

We find that the behavior of the rotational autocorrelation function matches with results from the orientation-orientation
coupling across all shapes studied here. Specifically, the density at which two-step behavior develops corresponds with
the vanishing probability of misorientation angles corresponding to intermediate configurations. This connection makes
intuitive sense: if particles are experiencing caged rotational motion, then the intermediate configurations which lead to
changes in orientation will be rare events as measured by the orientation-orientation coupling.
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Fig. S5: The rotational autocorrelation function calculated with l = 6 (right) for all shapes. The light green curve labeled ‘Random’
corresponds to free, unhindered rotations. (A) For the TC, two-step behavior develops at the transition to a BCT crystal. For the gradual
order development in shown by RD (B) and RC (C), the development two-step behavior helps to define the loss of plastic crystal
behavior. (D) For the PRC, neither the FCC or BCT-initialized states show plastic crystal behavior and instead have two-step behavior
and long time scales for the decay in the rotational autocorrelation function.
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