Supplementary information

A Novel Textile-like Carbon Wrapping for Highperformance Silicon Anodes in Lithium-ion Batteries

Jong Min Kim^a, Valentina Guccini^b, Dongwon Kim^a, Jiseop Oh^a, Seungman Park^a, Youngmoo Jeon^a, Taejin Hwang^a, German Salazar-Alvarez^{*b}, Yuanzhe Piao^{*a,c}

^a Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea

^b Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden

^c Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwonsi, Gyeonggi-do, 16229, Republic of Korea

*Corresponding authors. E-mail: parkat9@snu.ac.kr (Y. Piao) Tel: +82-31-888-9141 E-mail: german@mmk.su.se (G. Salazar-Alvarez) Tel: +46-816-3942

Fig. S1 A schematic illustration of cc-Si synthesis process.

Fig. S2 SEM images of Bare-Si powder.

Fig. S3 STEM images of (a) dispersed and (b) agglomerated enzymatically hydrolyzed cellulose nanofibers.

Fig. S4 The thickness of enzymatically hydrolyzed cellulose nanofibers.

Fig. S5 EDS analysis images of cc-Si with the element mapping of silicon, oxygen and carbon.

Fig. S6 Local XRD pattern of ctex-Si.

Fig. S7 Raman spectrum of ctex-Si.

Fig. S8 TGA graph of Bare-Si, cc-S, tex-Si and ctex-Si. The equation for C content calculation.

Fig. S9 (a) N_2 adsorption/desorption isotherms of cc-Si and ctex-Si. (b) BJH pore distribution diagrams of cc-Si and ctex-Si.

Fig. S10 A magnified CV curve of ctex-Si.

Fig. S11 Specific capacity of ctex-Si during CV with a scan rate of 0.1 mV s⁻¹.

Fig. S12 SEM images of a ctex-Si electrode after 500 cycles at 2.0 A g^{-1} .

Fig. S13 Cycling performance of ctex-Si for 100 cycles at 500 mA g⁻¹.

Fig. S14 Cycling performance of ctex-Si with higher active material mass loading (~ 1.3 mg cm⁻²) for 200 cycles at 2 A g⁻¹.

Sample	$R_{S}(\Omega)$	$\mathrm{R}_{\mathrm{SEI}}\left(\Omega ight)$	$R_{ct}(\Omega)$	Reduced Chi- square	
Fresh cc-Si	4.26 ± 0.06	-	6.37 ± 0.57	1.01 x 10 ⁻⁴	
Fresh ctex-Si	4.53 ± 0.05	-	3.84 ± 0.14	1.17 x 10 ⁻⁴	
Cycled cc-Si	3.09 ± 0.04	19.34 ± 0.14	17.83 ± 0.36	4.79 x 10 ⁻⁵	
Cycled ctex-Si	3.89 ± 0.05	11.54 ± 0.14	4.85 ± 0.31	1.23 x 10 ⁻⁴	

Table S1. EIS parameters for the fresh and 100 cycled cell of cc-Si and ctex-Si.

Sample	Synthesis Method	Carbon source	Si (wt%) In active	Active: conductive additive: binder	Total carbon content (%)	Retention (%) (Cycle)	A g ⁻¹	Ref
Textile-like carbon wrapped silicon	Pyrolysis	Cellulose nanofiber	95.71	70:15:15	18.0	94.5 (500)	2	Our work
Yolk-shell Si@void@C	Sol-gel / HF etching	Polydopamine	71	65:20:15	38.8	74 (1000)	4.2	Ref S1
Yolk-shell silicon- mesoporous carbon	Sol-gel / HF etching	Phenolic resin	73.3 42.2	60:20:20	36.02 54.6	~ 29 (400) 63 (400)	0.42	Ref S2
Nonfilling carbon- coated porous silicon	Pyrolysis / HF etching	Resorcinol- formaldehyde resin	89	80:10:10	18.8	100 (1000)	1.05	Ref S3
a phenolic resin- based carbon interfacial coated silicon	Sol-gel / Pyrolysis	Resorcinol- formaldehyde resin	81.7	60:20:20	30.9	69 (200)	0.5	Ref S4
Nanosized core/shell silicon@carbon	Pyrolysis	Polyvinylidene fluoride	95.7	60:16:24	18.6	97 (30)	0.05	Ref S5
Cocoon-like silicon based composite (porous Si@void@N- doped C)	Magnesio- thermic reduction / CVD	Pyridine vapor	79.3	85:0:15	18.1	84.9 (300) 100 (300)	2 16	Ref S6
Silicon Nanoparticles Embedded in Micro-Carbon	Hydro- thermal / Pyrolysis	Sucrose	30.5	60:20:20	61.4	93.5 (500)	0.8	Ref S7
double-shelled- yolkstructured silicon (carbon@void@ silicon)	CVD / HCl etching	Acetylene	60 (Carbon =24)	60:20:20	34.4	84.6 (1000)	5	Ref S8

Table S2. Comparison table with other carbon-coated silicon, yolk-shell structured silicon and silicon-carbon composite.

References

- S1. N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang and Y. Cui, *Nano Lett.*, 2012, **12**, 3315-3321.
- S2. J. P. Yang, Y. X. Wang, S. L. Chou, R. Y. Zhang, Y. F. Xu, J. W. Fan, W. X. Zhang, H. K. Liu, D. Y. Zhao and S. X. Dou, *Nano Energy*, 2015, 18, 133-142.
- S3. Z. D. Lu, N. Liu, H. W. Lee, J. Zhao, W. Y. Li, Y. Z. Li and Y. Cui, *ACS Nano*, 2015, **9**, 2540-2547.
- S4. W. Luo, Y. X. Wang, S. L. Chou, Y. F. Xu, W. Li, B. Kong, S. X. Dou, H. K. Liu and J. P. Yang, *Nano Energy*, 2016, 27, 255-264.
- S5. Y. H. Xu, G. P. Yin, Y. L. Ma, P. J. Zuo and X. Q. Cheng, *J. Mater. Chem.*, 2010, **20**, 3216-3220.
- F. H. Du, Y. Z. Ni, Y. Wang, D. Wang, Q. Ge, S. Chen and H. Y. Yang, ACS Nano, 2017, 11, 8628-8635.
- S7. M. G. Jeong, H. L. Du, M. Islam, J. K. Lee, Y. K. Sun and H. G. Jung, *Nano Lett.*, 2017, 17, 5600-5606.
- S8. Y. J. Liu, Z. X. Tai, T. F. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z. P. Guo and H. K. Liu, *Adv. Mater.*, 2017, 29. 1703028