Supplementary Information

Porous Hybrid Aerogels with Ultrahigh Sulfur

Loading for Lithium-Sulfur Batteries

Yibo He,^{ab} Songyan Bai,^a Zhi Chang,^{ab} Qi Li,^a Yu Qiao^{ab} and Haoshen Zhou*^{abc}

^a Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan

^b Graduate School of System and Information Engineering, University of Tsukuba 1-1-1, Tennoudai, Tsukuba 305-8573, Japan

^c National Laboratory of Solid State Microstructures & Department of Energy Science and Engineering, Nanjing University, Nanjing 210093, P. R. China

*E-mail: <u>hs.zhou@aist.go.jp</u> & <u>hszhou@nju.edu.cn</u>

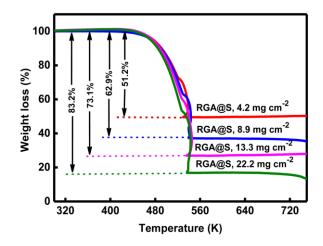
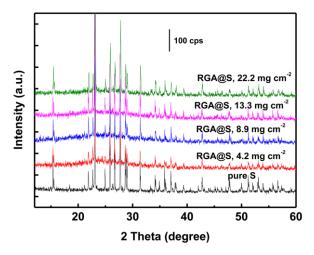
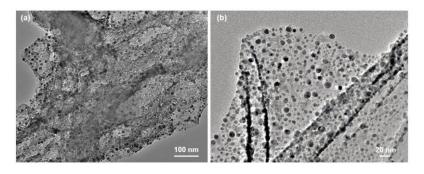
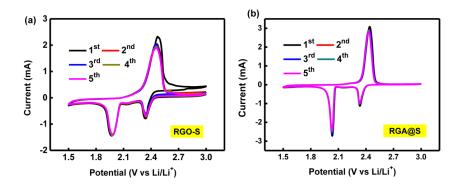
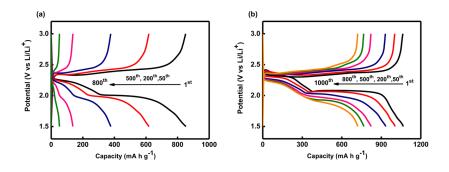



Fig. S1 TGA curves of RGA@S hybrid aerogels with various sulfur contents.

Fig. S2 X-ray diffraction patterns of RGA@S hybrid aerogels with various sulfur contents.

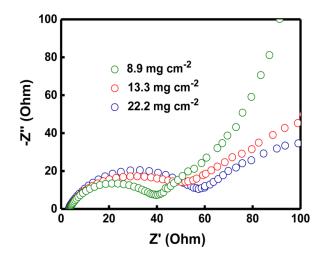

Fig. S3 TEM images of RGA@S hybrid aerogel with sulfur loading of 8.9 mg cm⁻².

Fig. S4 Cyclic voltammograms at a scan rate of 0.1 mV s⁻¹ for (a) RGO-S electrode and (b) RGA@S electrode with sulfur loading of 4.2 mg cm⁻².

Fig. S5 Discharge/charge profiles of selected cycles at a current density of 2 A g^{-1} for (a) RGO-S and (b) RGA@S electrodes with sulfur loading of 4.2 mg cm⁻².

Fig. S6 Electrochemical impedance spectra of the RGA@S electrodes with different sulfur loading.