Electronic Supplemental Information

SYNTHESIS AND CHARACTERIZATION OF Co_{2-x}Rh_xP NANOPARTICLES AND THEIR CATALYTIC ACTIVITY TOWARDS THE OXYGEN EVOLUTION REACTION.

Samuel Mutinda, Da Li, Jacob Kay and Stephanie L. Brock(Wayne State University, Detroit, MI 48202 *E-mail: <u>sbrock@chem.wayne.edu</u>

Table S1: Phosphidation parameters for different compositions of Co_{2-x}Rh_xP nanoparticles.

Target composition	Phosphidation temperature (°C)	Phosphidation duration (hours)
Co _{1.9} Rh _{0.1} P	305	1
Co _{1.75} Rh _{0.25} P	310	3
Co _{1.5} Rh _{0.5} P	330	3
Co _{1.25} Rh _{0.75} P	330	3
Co ₁ Rh ₁ P	330	3
Co _{0.75} Rh _{1.25} P	350	3
Co _{0.5} Rh _{1.5} P	350	3

Table S2: A summary of EDX Data for Co_{2-x}Rh_xP nanoparticles

Targeted Composition	Calculated Composition	
Co _{1.75} Rh _{0.25} P	Co _{1.78} Rh _{0.22} P _{1.31}	
Co _{1.5} Rh _{0.5} P	$Co_{1.52}Rh_{0.48}P_{1.74}$	
Co _{1.25} Rh _{0.75} P	$Co_{1.18}Rh_{0.82}P_{2.10}$	
Co ₁ Rh ₁ P	$Co_{1.10}Rh_{0.90}P_{0.73}$	
Co _{0.75} Rh _{1.25} P	$Co_{0.84}Rh_{1.16}P_{0.64}$	
Co _{0.5} Rh _{1.5} P	Co _{0.59} Rh _{1.41} P _{0.77}	

Table S3: Summary of fitted peak positions, particle size, and d-spacing for $Co_{2-x}Rh_xP$ nanoparticles where $x \ge 1$ (antifluorite structure).

Target composition	(220) Peak position (2Θ)	d-spacing (Å)	Crystallite size (nm)
Co ₁ Rh ₁ P	47.696 ± 0.002	1.906 ± 0.002	5.2 ± 0.2
Co _{0.75} Rh _{1.25} P	47.362 ± 0.034	1.918 ± 0.003	5.1 ± 0.2
Co _{0.5} Rh _{1.5} P	47.129 ± 0.026	1.927 ± 0.002	5.7 ± 0.2
Rh ₂ P	46.764 ± 0.015	1.941 ± 0.001	4.4 ± 0.1

Sample	Co (molar ratio)	Rh (molar ratio)	P (molar ratio)
As-prepared sample	1.8	0.2	1.5
Post-catalysis sample	1.8	0.2	Below Detection Limit

Table S4: ICP-MS Data for Co1.75Rh0.25P nanoparticles before and after OER catalysis

Fig. S1: A compilation of histograms derived from TEM data for different $Co_{2-x}Rh_xP$ compositions. Data for the Co_1Rh_1P target composition was not included here due to a high degree of polydispersity and phase segregation.

Fig. S2: PXRD data for $Co_{1.9}Rh_{0.1}P$ target composition under slightly different phosphidation conditions. A small CoP (211) peak can be seen in the sample that was phosphided at 310°C.