Electronic Supplementary Information

Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic Engineering

Guoge Zhang^{ab*}, Junyi Yuan^a, Yan Liu^b, Wei Lu^c, Nianqing Fu^a, Wenfang Li^a and

Haitao Huang^b*

a School of Materials Science and Engineering, South China University of Technology, Guangzhou, P. R. China.

b Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong.

c University Research Facility in Materials Characterization and Device Fabrication, The
Hong Kong Polytechnic University, Hong Kong.

Fig. S1. Optical image of plain nickel, anodic nickel (PNC), Ni₃S₂ nanorods and Ni₃S₂ nanorod@Ni-Fe LDH nanofilm

60

70

Ni

Fig. S2. (a) SEM, (b) TEM and (c) XRD of PNC

40

2 θ (°)

50

30

10

20

Fig. S3. Raman spectrum of vertically aligned Ni₃S₂ nanorods.

Fig. S4. (a) SEM and (b) XRD of plain nickel subject to sulfidization without additional nickel salts.

Fig. S5. (a) Top view and (b) cross section view SEM images, and (c) XRD of Ni_3S_2 nanowire obtained from sulfidization of plain nickel with additional nickel salts.

Fig. S6. Optical image of the sample after 10 min ultrasonic treatment in deionized water.

Fig. S7. The energy dispersive X-ray spectroscopy (EDX) of (a) Ni₃S₂ nanorod and (b) Ni-Fe LDH nanofilm.

Fig. S8. (a) Fe 2p XPS, (b) XRD and (c) Raman spectra of Ni₃S₂ nanorod@Ni-Fe LDH nanofilm.

Fig. S9. (a) SEM image and (b) XRD of $Ni_3S_2@Ni$ -Fe LDH after 40 hours' water electrolysis.

Fig. S10. (a) CV and (b) Tafel plot of Ni₃S2@Ni-Fe LDH prepared on nickel foam in 1M KOH. CV Scan rate: 1 mV s⁻¹.

Fig. S11. CV plot of two kinds of Ni₃S₂ in 1M KOH. Scan rate: 1 mV s⁻¹.

Fig. S12. Optical image of water electrocatalysis at the current density of 10 mA cm⁻², (a) aligned Ni₃S₂ nanorods and (b) entangled Ni₃S₂ nanowires. Electrolyte: 1 M KOH.

Fig. S13. (a) SEM and (b) XRD of Ni@Ni-Fe LDH.

Fig. S14. (a) CV and (b) Tafel plot of Ni@Ni-Fe LDH in 1M KOH. CV Scan rate: 1 mV s⁻¹.

Fig. S15. The variation of scan rate with current density in the potential range where no Faradaic processes occur. (a) Ni₃S₂ nanorods, (b) Ni₃S₂@Ni-Fe LDH, (c) Ni@Ni-Fe LDH.

Fig. S16. S 2p XPS spectra of Ni₃S₂@Ni-Fe LDH and Ni₃S₂ nanorod.

Fig. S17. Contact angle of (a) Ni₃S₂@Ni-Fe LDH, (b) Ni₃S₂ nanorod and (c) Ni@Ni-Fe LDH.

Table S1. Performance comparison between Ni3S2@Ni-Fe LDH and recently reportednon precious OER catalysts.

Material	Solution	Current	OverPotential	Tafel slope	Reference
		collector	@ 10mA/cm ²		
			mV		
Ni ₃ S ₂ @NiFe LDH	1М КОН	Planar, nickel foil	245	35	This work
		3D, nickel	190	38	
CoNi(20:1)-P- NS ¹	1M KOH	Glassy carbon	273	45	Energy Environ. Sci., 2017
		3D, nickel foam	209	52	
Na _{0.08} Ni _{0.9} Fe _{0.1} O ₂	1M KOH	Glassy carbon	260	40	Energy Environ. Sci., 2017
FeNi-LDH /Ti ₃ C ₂ - MXene ³	1М КОКН	Glassy carbon	298	43	Nano Energy, 2018
CoOx ⁴	1М КОН	Glassy carbon	306	65	Nano Energy, 2018
CoO _x /BNG ⁵	0.1M KOH	Glassy carbon	295	57	Angew. Chem. Int. Ed., 2017
pc-Ni-Bi@NB ⁶	1М КОН	Glassy carbon	302	52	Angew. Chem. Int. Ed., 2017
Ni _x Co _{1-x} O ⁷	0.5M KOH	Planar, gold	350		Adv. Funct. Mater. 2017
Fe ₃ N/Fe ₄ N ⁸	1М КОН	3D, nickel foam	238	44.5	ACS Catalysis 2017
NiO/CoN ⁹	1М КОН	Carbon fiber paper	300	35	ACS Nano, 2017
Fe ₁ Co ₁ -ONS ¹⁰	0.1M KOH	Glassy carbon	308	36.8	Adv. Mater. 2017
NiFe-MOF ¹¹	0.1M KOH	3D, Ni foam	240	34	Nat. Commun., 2017
Ni(OH) ₂ -Au ¹²	1М КОН	Glassy carbon	270	35	J. Am. Chem. Soc., 2016
NiFe-NS ¹³	1М КОН	glassy carbon	302	40	Nat. Commun., 2014
NiFe/NiFe:Pi ¹⁴	1M KOH	3D, carbon fiber paper	290	38	ACS Catalysis 2017
CoFe LDH-Ar ¹⁵	1M KOH	Glassy carbon	266	37.85	Angew. Chem. Int. Ed., 2017

$(Co_{0.25}Fe_{0.48})_2P_{16}$	1М КОН	Co-Fe-P ribbon	270	30	Energy & Environ. Sci. 2016	
MoS ₂ -Ni ₃ S ₂ ¹⁷	1М КОН	3D, Ni foam	249	57	ACS Catalysis 2017	
FeNi ₈ Co ₂ LDH ¹⁸	1М КОН	3D, Ni foam	230	42	Chem. Commun. 2015	
Carbon-coated Ni-Co nanowier ¹⁹	1M KOH	Carbon fiber fabric	302	43.6	Adv. Energy Mater. 2016	
Mono NiTi MMO ²⁰	1M KOH	Glassy carbon electrode	320	52	J. Am. Chem. Soc. 2016	
βNi(OH) ₂ /O- MWCNT ²¹	1M KOH	Glassy carbon electrode	270	32	Adv. Energy Mater. 2016	
Ni ₃ FeN nanoparticle ²²	1М КОН	Glassy carbon electrode	280		Adv. Energy Mater. 2016	
Fe ₃ O ₄ @Co ₉ S ₈ /rG O ²³	1M KOH	Glassy carbon	320	54.5	Adv. Funct. Mater. 2016	
NiCo LDH ²⁴	0.1 M KOH	3D, Ni foam	420	113	J. Power Sources 2015	
NiCo LDH ²⁵	1М КОН	Carbon paper	367	40	Nano Lett. 2015	
Fe-N-C/NiFe- LDH ²⁶	0.1M KOH	Rotating disk electrode	285		Energy & Environ. Sci. 2016	
NiCo ₂ S ₄ NW/NF ²⁷	1М КОН	3D, Ni foam	260	40.1	Adv. Funct. Mater. 2016	
NiSx ²⁸	1М КОН	Glassy carbon electrode	353	41	Chem. Mater. 2016	

Table S2. Electrical elements of Ni_3S_2 and Ni_3S_2 @Ni-Fe LDH fitted by the equivalent circuit as shown in the inset of Fig. 5a.

	R_s / Ω	CPE ₁ / mF	R_{ct} / Ω	CPE ₂ / mF	R_{OER}/Ω
Ni ₃ S ₂	0.715	270	0.165	818	3.516
Ni ₃ S ₂ @Ni-Fe LDH	0.612	286	0.269	486	1.214
Ni@Ni-Fe LDH	0.787	11	25.2	66	14.2

References

- X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai and D. Yu, *Energy & Environ. Sci.*, 2017, **10**, 893.
- B. Weng, F. Xu, C. Wang, W. Meng, C. R. Grice and Y. Yan, *Energy & Environ. Sci.*, 2017, 10, 121.
- 3. M. Yu, S. Zhou, Z. Wang, J. Zhao and J. Qiu, *Nano Energy*, 2018, 44, 181.
- 4. W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai and Y. Yin, *Nano Energy*, 2018, 43, 110.
- Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu and Y. Xie, *Angew. Chem. Int. Ed.*, 2017, 56, 7121.
- W.-J. Jiang, S. Niu, T. Tang, Q.-H. Zhang, X.-Z. Liu, Y. Zhang, Y.-Y. Chen, J.-H. Li, L. Gu, L.-J. Wan and J.-S. Hu, *Angew. Chem. Int. Ed.*, 2017, 56, 6572.
- K. Fominykh, G. C. Tok, P. Zeller, H. Hajiyani, T. Miller, M. Döblinger, R. Pentcheva, T. Bein and D. Fattakhova-Rohlfing, *Adv. Funct. Mater.*, 2017, 27, 1605121.
- 8. F. Yu, H. Zhou, Z. Zhu, J. Sun, R. He, J. Bao, S. Chen and Z. Ren, ACS Catalysis, 2017, 7, 2052.
- J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, ACS Nano, 2017, 11, 2275.
- 10. L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao and Z. Zhu, Adv. Mater., 2017, 29, 1606793.
- 11. J. Duan, S. Chen and C. Zhao, *Nat. Commun.*, 2017, **8**, 15341.
- G. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K. Chang, X. Meng, T. Kako and J. Ye, *J. Am. Chem. Soc.*, 2016, **138**, 9128.
- 13. F. Song and X. Hu, *Nat. Commun.*, 2014, **5**, 4477.

- 14. Y. Li and C. Zhao, ACS Catalysis, 2017, 7, 2535.
- Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao and S. Wang, *Angew. Chem. Int. Ed.*, 2017, 56, 5867.
- Y. Tan, H. Wang, P. Liu, Y. Shen, C. Cheng, A. Hirata, T. Fujita, Z. Tang and M. Chen, *Energy & Environ. Sci.*, 2016, 9, 2257.
- Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, *ACS Catalysis*, 2017, 7, 2357.
- 18. X. Long, S. Xiao, Z. Wang, X. Zheng and S. Yang, *Chem. Commun.*, 2015, **51**, 1120.
- S.-H. Bae, J.-E. Kim, H. Randriamahazaka, S.-Y. Moon, J.-Y. Park and I.-K. Oh, *Adv. Energy Mater.*, 2016, DOI: 10.1002/aenm.201601492, 1601492.
- Y. Zhao, X. Jia, G. Chen, L. Shang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, D. O'Hare and T. Zhang, *J. Am. Chem. Soc.*, 2016, **138**, 6517.
- L. Wang, H. Chen, Q. Daniel, L. Duan, B. Philippe, Y. Yang, H. Rensmo and L. Sun, *Adv. Energy Mater.*, 2016, 6, 1600516.
- 22. X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, *Adv. Energy Mater.*, 2016, **6**, 1502585.
- 23. J. Yang, G. Zhu, Y. Liu, J. Xia, Z. Ji, X. Shen and S. Wu, Adv. Funct. Mater., 2016, 26, 4712.
- 24. J. Jiang, A. Zhang, L. Li and L. Ai, J. Power Sources, 2015, 278, 445.
- H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, Nano Lett., 2015, 15, 1421.
- S. Dresp, F. Luo, R. Schmack, S. Kuhl, M. Gliech and P. Strasser, *Energy & Environ. Sci.*, 2016, 9, 2020.
- 27. A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661.
- 28. H. Li, Y. Shao, Y. Su, Y. Gao and X. Wang, Chem. Mater., 2016, 28, 1155.