Electronic Supplementary Information

Monolithic nanofoam based on conjugated microporous polymers nanotubes with ultrahigh mechanical strength and flexibility for energy storage

Peng Mu, Hanxue Sun, Zhaoqi Zhu, Jingxian He, Weidong Liang and An Li*

Synthesis of the CMPs-MN rod

This synthesis process is similar to the columnar CMPs-MN1 just using a glass tube with an inner diameter of 5mm and a length of 15 cm as reactor.

Synthesis of the fibrous CMPs-MN

This synthesis process is similar to the columnar CMPs-MN1 just using capillary tube with an inner diameter of 0.9 mm and a length of 20 cm as reactor.

Characterization

The structure of the CMPs-MN was investigated by the Solid-phase ¹³C CP/MAS nuclear magnetic resonance (NMR Bruker AVANCE III 400 MHz NMR spectrometer) and Fourier transform infrared spectroscopy (FTIR Nicolet Nexus 670 FT-IR). The morphology of the CMPs-MN was taken on Scanning electron microscope (SEM JSM-6701F) and Transmission electron microscope (TEM Tecnai G2TF20). The specific surface area and porosity of the as-prepared CMPs-MN was measured by N₂ adsorption and desorption at 77.3 k using a volumetric sorption analyzer (micromeritics ASAP 2020) before analysis, the samples were degassed at 120 °C for 12 h under vacuum. The elemental analyse was carried out on an elemental analyzer (Elementar Vario EL). Thermogravimetric analyse was measured by thermogravimeter analyzer (Perkin Elmer) from room temperature to 800 °C at a heating and cooling rate of 10 °C min⁻¹ under nitrogen atmosphere. The compressive properties were performed by using an electrical universal material testing machine with equipped two flat-surface compression stages and a 500 N load cell (EZ-Test, SHIMADZU) at a stress rate of 5mm/min.

Figure S1 Camera photo of CMPs-MN0

Figure S2 SEM image of CMPs-MN0

Figure S3 XRD patterns of CMPs-MN1, CMPs-MN2, paraffin, CMPs-MN1/Paraffin and CMPs-MN2/Paraffin composites