Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward methanol oxidation reaction

Minmin Yan^a, Quanguo Jiang^a, Tao Zhang^a, Jiayu Wang^b, Lu Yang^a, Zhiyong Lu^a,

Haiyan He^a, Yongsheng Fu^b, Xin Wang^b, and Huajie Huang^{a,*}

^aCollege of Mechanics and Materials, Hohai University, Nanjing 210098, China

^bKey Laboratory of Soft Chemistry and Functional Materials, Nanjing University of

Science and Technology, Ministry of Education, Nanjing 210094, China

*Corresponding author. E-mail address: huanghuajie@hhu.edu.cn

Supplementary Results

Fig. S1 The synthetic process for 3D LDCNT-NG hydrogel. It includes: (1) dispersion of low-defect CNTs in GO suspension via ultrasonic treatment; (2) formation of 3D LDCNT-NG hydrogel through a solvothermal reaction.

Fig. S2 Representative FE-SEM images and Pt particle size distribution of (A and B)

Pt/C, (C and D) Pt/CNT, and (E and F) Pt/G, respectively.

Fig. S3 EDX spectrum of the Pt/LDCNT-NG architecture.

Fig. S4 Nitrogen adsorption-desorption isotherms and pore size distributions of (A and D) G, (B and E) NG, and (C and F) LDCNT samples, respectively.

Fig. S5 C 1s core-level XPS spectrum of GO.

Fig. S6 Linear sweep voltammetrys of (A) the Pt/LDCNT-NG architectures with varying LDCNT/NG ratios, and (B) Pt/(LDCNT)₃-(NG)₇, Pt/NG, Pt/CNT, Pt/G and Pt/C in $0.5 \text{ M H}_2\text{SO}_4$ solution at 50 mV s⁻¹.

Fig. S7 (A) The mass activities of different catalysts before and after 100 cycles. 100 consecutive cycle scans of methanol oxidation obtained from (B) Pt/(LDCNT)₃-(NG)₇, (C) Pt/NG, (D) Pt/CNT, (E) Pt/G and (F) Pt/C.

Fig. S8 Nyquist plots of $Pt/(LDCNT)_3$ -(NG)₇ electrode and the corresponding fitting curve. The inset is the equivalent circuit.

Fig. S9 The relaxed atomic structure of (A) Pt/RGO-LDCNT, and (B) the corresponding band structure. The relaxed atomic structure of (C) Pt/N-RGO-LDCNT, and (D) the corresponding band structure.

Catalyst	ECSA (m² g ⁻¹)	Mass activity (mA mg ⁻¹)	Scan rate (mV s ⁻¹)	Electrolyte	Reference	
3D Pt/(LDCNT) ₃ -	132.4	871.9	50	0.5 M H ₂ SO ₄ +	This work	
(NG) ₇				1 M CH ₃ OH		
Pt/[BMIM]BF ₄ /	N.A.	155.0	50	0.5 M H ₂ SO ₄ +	1	
CNT				1 M CH ₃ OH		
Pt/ionic liquid/	67.6	~410.0	50	0.5 M H ₂ SO ₄ +	2	
CNT				0.5 M CH₃OH		
Pt/low-defect	63.0	203.8	20	1 M H ₂ SO ₄ +	3	
graphene				2 M CH₃OH		
Pt/graphene	101.3	333.3	50	0.5 M H ₂ SO ₄ +	4	
				0.5 M CH₃OH		
Pt/exfoliated	51.0	~300.0	50	0.5 M H ₂ SO ₄ +	5	
graphene				2 M CH₃OH		
Pt/CNT/graphene	95.6	617.9	20	1 M H ₂ SO ₄ +	6	
				2 M CH₃OH		
Pt/N-doped	N.A.	~400.0	200	0.5 M H ₂ SO ₄ +	7	
graphene				1 M CH ₃ OH		
Pt/N-doped	64.6	~390.0	20	1 M H ₂ SO ₄ +	8	
graphene ribbon				2 M CH₃OH		
PtAu/N-doped	60.9	417.0	50	0.5 M H ₂ SO ₄ +	9	
graphene				0.5 M CH ₃ OH		
Pt/B-doped	58.8	~410.0	50	0.5 M H ₂ SO ₄ +	10	
graphene				0.5 M CH ₃ OH		
PtRu/N-doped	N.A.	500.5	10	0.5 M H ₂ SO ₄ +	11	
CNT-graphene				1 M CH ₃ OH		
3D Pt/C ₃ N ₄ /	69.0	612.8	20	1 M H ₂ SO ₄ +	12	
graphene				2 M CH ₃ OH		
Pt/mesoporous	N.A.	~450.0	20	0.5 M H ₂ SO ₄ +	13	
carbon				1 M CH ₃ OH		
Pt/macroporous	N.A.	81.6	50	0.5 M H ₂ SO ₄ +	14	
carbon				0.5 M CH ₃ OH		
Pt/N-doped	24.6	343.0	50	0.5 M H ₂ SO ₄ +	15	
porous carbon				1 M CH ₃ OH		
3D Pt/RuO ₂ /	122.7	646.5	20	1 M H ₂ SO ₄ +	16	
graphene				2 M CH ₃ OH		
AuPtCu	N.A.	~500.0	50	0.1 M HClO ₄ +	17	
nanowires				1 M CH ₂ OH		

Table S1. Comparison of methanol oxidation activity for the 3D Pt/(LDCNT)₃-(NG)₇

hybrid and recent state-of-the-art Pt-based catalysts.

FePtPd	l	N.A.	488.7	50	0.1 M HClO ₄ +	18
nanow	rires				0.2 M CH ₃ OH	
PtPd d	endrites	N.A.	490.0	50	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	19
PtPd graphe	dendrites/ ne	81.6	647.2	50	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	20
PtAu	dendrites/	100.8	365.0	50	0.5 M H ₂ SO ₄ +	21
graphene					1 M CH ₃ OH	

Table S2. The charge-transfer resistance (R_{ct}) for different catalysts.

Electrodo	R _{ct}			
Liectiode	Value (ohm)	Error (%)		
Pt/(LDCNT) ₃ -(NG) ₇	5.3	1.9		
Pt/CNT	22.5	6.1		
Pt/G	9.6	9.1		
Pt/C	1.6×10 ³	4.8		

Reference

- (1) H. Chu, Y. Shen, L. Lin, X. Qin, G. Feng, Z. Lin, J. Wang, H. Liu and Y. Li, Adv. Funct. Mater., 2010, 20, 3747-3752.
- (2) S. Guo, S. Dong and E. Wang, Adv. Mater., 2010, 22, 1269-1272.
- (3) H. Huang, H. Chen, D. Sun and X. Wang, J. Power Sources, 2012, 204, 46-52.
- (4) S. Wu, J. Liu, Z. Tian, Y. Cai, Y. Ye, Q. Yuan and C. Liang, ACS Appl. Mater. Interfaces, 2015, **7**, 22935-22940.
- (5) S. M. Choi, H. S. Min, H. J. Kim and W. B. Kim, Carbon, 2011, 49, 904-909.
- (6) X. Zhang, J. Zhang, H. Huang, Q. Jiang and Y. Wu, *Electrochim. Acta*, 2017, **258**, 919-926.
- (7) B. Xiong, Y. Zhou, Y. Zhao, J. Wang, X. Chen, R. O'Hayre and Z. Shao, Carbon, 2013,

52, 181-192.

- (8) H. Huang, G. Ye, S. Yang, H. Fei, C. S. Tiwary, Y. Gong, R. Vajtai, J. M. Tour, X. Wang and P. M. Ajayan, *J. Mater. Chem. A*, 2015, **3**, 19696-19701.
- (9) G. Yang, Y. Li, R. K. Rana and J. J. Zhu, J. Mater. Chem. A, 2013, 1, 1754-1762.
- (10) Y. Sun, C. Du, M. An, L. Du, Q. Tan, C. Liu, Y. Gao and G. Yin, *J. Power Sources*, 2015, **300**, 245-253.
- (11) R. Lv, T. Cui, M. S. Jun, Q. Zhang, A. Cao, D. S. Su, Z. Zhang, S. H. Yoon, J.
 Miyawaki and I. Mochida, *Adv. Funct. Mater.*, 2015, **21**, 999-1006.
- (12) H. Huang, S. Yang, R. Vajtai, X. Wang and P. M. Ajayan, *Adv. Mater.*, 2014, **26**, 5160-5165.
- (13) H. Jiang, T. Zhao, C. Li and J. Ma, Chem. Commun., 2011, 47, 8590-8592.
- (14) X. Bo and L. Guo, *Electrochim. Acta*, 2013, **90**, 283-290.
- (15) F. Su, Z. Tian, C. K. Poh, Z. Wang, S. H. Lim, Z. Liu and J. Lin, *Chem. Mater.*, 2010, 22, 832-839.
- (16) H. Huang, J. Zhu, D. Li, C. Shen, M. Li, X. Zhang, Q. Jiang, J. Zhang and Y. Wu, J. Mater. Chem. A, 2017, **5**, 4560-4567.
- (17) W. Hong, J. Wang and E. Wang, Small, 2014, 10, 3262-3265.
- (18) S. Guo, S. Zhang, X. Sun and S. Sun, J. Am. Chem. Soc., 2011, 133, 15354-15357.
- (19) L. Wang, Y. Nemoto and Y. Yamauchi, J. Am. Chem. Soc., 2011, 133, 9674-9677.
- (20) S. Guo, S. Dong and E. Wang, Acs Nano, 2010, 4, 547-555.
- (21) W. Yuan, X. Fan, Z. Cui, T. Chen, Z. L. Dong, C. Li, W. Yuan, X. Fan, Z. Cui and T. Chen, J. Mater. Chem. A, 2016, 4, 7352-7364.