Supplementary information for

Energy efficiency of ionic transport through proton conducting ceramics electrolytes for energy conversion applications

Takashi Nakamura,^{*}a Shusuke Mizunuma,^a Yuta Kimura,^a Yuichi Mikami,^b Kousuke Yamauchi,^b Tomohiro Kuroha,^b Noboru Taniguchi,^b Yoichiro Tsuji,^b Yuji Okuyama,^c Koji Amezawa^a

^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-

1-1, Katahira, Aoba-Ku, Sendai, 980-8577, Japan

^b Panasonic Corporation, 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8501, Japan

^c Faculty of Engineering, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan

Figure S1. XRD patterns of $BaZr_{0.8}Y_{0.2}O_{3-\delta}$.

Figure S2. SEM image of the cross section of the dense $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ specimen.

Figure S3. TEM images of the dense $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ specimen and the points of EDX analysis.

Figure S4. Typical impedance spectra of $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ electrolyte measured in $1.9\%H_2O-1\%H_2$ -Ar at 473 to 1073 K.

Figure S5. Energy efficiency, current ratio, and voltage ratio of the proton transport through a $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ electrolyte, (a) the electrolyte thickness dependence and (b) the external current dependence. Energy efficiency and power output of the proton transport through a $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ electrolyte, (c) the electrolyte thickness dependence and (d) the external current dependence. Anode: 4.2%H₂O-H₂, cathode: 4.2%H₂O-O₂, temperature: 773 K.

Figure S6. Energy efficiency, current ratio, and voltage ratio of the proton transport through a $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ electrolyte, (a) the electrolyte thickness dependence and (b) the external current dependence. Energy efficiency and power output of the proton transport through a $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ electrolyte, (c) the electrolyte thickness dependence and (d) the external current dependence. Anode: 4.2%H₂O-H₂, cathode: 4.2%H₂O-O₂, temperature: 973 K.

Figure S7. Influence of the partial conductivity variation on the energy efficiencies, the increase of σ_{H}^{o} at (a) 773 K and (b) 973 K, and the decrease of σ_{h}^{o} at (c) 773 K and (d) 973 K.