Supplementary Information

Molecular self-assembly of a nanorod-like N-Li₄Ti₅O₁₂/TiO₂/C anode for superior lithium ion storage

Sainan Luo^{a,1}, Pengcheng Zhang^{a,1}, Tao Yuan^{a,b,*}, Jiafeng Ruan^a, Chengxin Peng^{a,b}, Yuepeng Pang^{a,b}, Hao Sun^{a,b}, Junhe Yang^{a,b}, Shiyou Zheng^{a,b,*}

^a School of Materials Science and Engineering, University of Shanghai for Science and

Technology, Shanghai 200093, China

^b Shanghai Innovation Institute for Materials, Shanghai 200444, China

* Corresponding author at: School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

E-mail addresses: E-mail: yuantao@usst.edu.cn (T. Yuan), syzheng@usst.edu.cn (S. Zheng).

¹ These authors contributed equally to this work.

Contents:

Figure S1. TGA curve for the NT-LTO/C composite in an air atmosphere with a heating rate of 10 °C min⁻¹.

Figure S2. TEM photosgraphs of pristine LTO with mechanical mixing of anatase- TiO_2 and LiOH as reactants after calcination at 750 °C for 5 h in a N₂ atmosphere.

Figure S3. (a) CV curves from 0.2 to 10 mV s⁻¹; (b) analysis of *b*-value for anodic and cathodic peak currents; (c) The plots of $v^{1/2}$ vs $i/v^{1/2}$ used for calculating constants k_1 and k_2 at different potentials; (d) capacitive (red) and diffusion currents contributed to charge storage of NT-LTO/C at a scan rate of 1 mV s⁻¹.

Figure S4. The discharge and charge profiles for the pristine LTO electrode at various rates from 0.5 C to 100 C.

Figure S5. The relationship of the voltage vs. x in NT-LTO/C and LTO electrodes.

Figure S6. Real and imaginary parts of the complex impedance vs. $\omega^{-1/2}$ for the NT-LTO/C and LTO electrodes.

Figure S7. The corresponding cathode and anode curves during the charge/discharge process of LFP||pristine LTO cell.

Table S1. Refined structural parameters of $Li_4Ti_5O_{12}$ obtained from the two phase Rietveld refinement using X-ray powder diffraction data at room temperature. The symbols, g and U, represent the occupation and isotropic thermal parameters, respectively. The profile factor is R_{p} , and the weighted profile factor is R_{wp} .

Table S2. Ratio analysis of the peaks in the XPS spectrum of the NT-LTO/C composite

Table S3. Ti2p composition from XPS

Table S4. N1s composition from XPS

Table S5. Values of A, dE/dx and the diffusion coefficient D of NT-LTO/C and LTO electrodes at a discharge voltage of 2.0 V.

Figure S1

Figure S1 TGA curve for the NT-LTO/C composite in an air atmosphere with a heating rate of 10 °C min⁻¹.

Figure S2 TEM photographs of pristine LTO with mechanical mixing of anatase-TiO₂ and

LiOH as reactants after the calcination at 750 $^{\rm o}\text{C}$ for 5 h in a N_2 atmosphere.

Figure S3. (a) CV curves from 0.2 to 10 mV s⁻¹; (b) analysis of *b*-value for anodic and cathodic peak currents; (c) The plots of $v^{1/2}$ vs $i/v^{1/2}$ used for calculating constants k_1 and k_2 at different potentials; (d) capacitive (red) and diffusion currents contributed to charge storage of NT-LTO/C at a scan rate of 1 mV s⁻¹.

To investigate the pseudocapacitance performance of the NT-LTO/C electrode, the ion diffusion and charge storage kinetics of NT-LTO/C electrode are inverstigated by CV at various scan rates from 0.2 to 10 mV s⁻¹ (**Figure S3a**). **Equation S1** describes the kinetic mechanism by the dependence of the current (*i*) on the scan rate (v).¹

$$i = av^{o}$$
 (Eq. S1)

where, b value is an adjustable parameter, which represents the slope of the log(v)-log(i) plots. Typically, the slope of 0.5 (b=0.5) signifies a diffusion-controlled process, and the slope of 1 (b=1) suggests a capacitive-controlled behavior (also named surface Faradic redox reaction).² As displayed in **Figure S3b**, the cathodic and anodic b values of NT-LTO/C anode in LIBs are 0.61 and 0.59 respectively, demonstrating that the ion storage mechanism of NT-LTO/C anode tends to both diffusion-controlled and capacitive-controlled processes. Moreover, the contribution ratios of diffusion-controlled processe and capacitive-controlled process are quantitatively separated through the method by Dunn and co-workers:³

$$i = k_1 v + k_2 v^{1/2}$$
 (Eq. S2)

In **Equation S2**, k_1v and $k_2v^{1/2}$ represent the surface capacitive and diffusion-controlled process, respectively.^{4,5} The current at a fixed potential (i) can be expressed as a combination of k_1v and $k_2v^{1/2}$. By plotting $i/v^{1/2}$ versus $v^{1/2}$ (**Figure S3c**), one can determine k_1 and k_2 from the slope and the y-axis intercept point of a straight line, respectively. Comparing the shaded area (k_1v) in **Figure S3d**, it can be found that ~30.5 % of the total charge in the NT-LTO/C electrode is surface capacitive (red region) at a scan rate of 1 mV s⁻¹. This result suggests that the NT-LTO/C electrode is dominated by pseudocapacitive nature during the charge/discharge process.

Figure S4 The discharge and charge profiles for the pristine LTO electrode at various rates from 0.5 C to 100 C.

Figure S5 The relationship of the voltage vs. x in NT-LTO/C and LTO electrodes.

Figure S6 Real and imaginary parts of the complex impedance vs. $\omega^{-1/2}$ for the NT-LTO/C and LTO electrodes.

Figure S7

Figure S7 The corresponding cathode and anode curves during the charge/discharge process of the LFP||pristine LTO cell.

Table S1 Refined structural parameters of $Li_4Ti_5O_{12}$ obtained from the two phase Rietveld refinement using X-ray powder diffraction data at room temperature. The symbols, g and U, represent the occupation and isotropic thermal parameters, respectively. The profile factor is

$Li_4Ti_5O_{12}$ (phase No. 1)						
Atom	site	Х	Ŷ	Z	g	U
Li	8a	0.0000	0.0000	0.0000	1.000	0.0000
Li	16c	0.6250	0.6250	0.6250	0.1667	0.0000
Ti	16c	0.6250	0.6250	0.6250	0.8333	0.0000
0	32e	0.3890	0.3890	0.3890	1.0000	0.0000
a=8.357 Å b=8.357 Å c=8.357 Å $\alpha = \beta = \gamma = 90^{\circ}$						
TiO_2 (phase No. 2)						
Atom	site	Х	У	Z	g	U
Ti	4a	0.0000	0.7500	0.1250	1.0000	0.0000
0	8e	0.0000	0.7500	0.3333	1.0000	0.0000
a=3.785 Å b=3.785 Å c=9.514 Å α=β=γ=90°						
R-factors and weight fraction						
$R_{wp} = 9.77\%$ $R_p = 7.26\%$ $S = 1.5914$						
Li ₄ Ti ₅ O ₁₂ : 95.48 % TiO ₂ : 4.52 %						

 $R_{\mbox{\scriptsize p}},$ the weighted profile factor is $R_{\mbox{\scriptsize wp}}.$

 Ratios (% at.)
 C
 N

 Li
 Ti
 O
 C
 N

 NT-LTO/C
 11.3
 36.6
 38.7
 11.0
 2.4

Table S2 Ratio analysis of the peaks in the XPS spectrum of the NT-LTO/C composite

	Ti ⁴⁺ 2p1/2	Ti ³⁺ 2p1/2	Ti ⁴⁺ 2p3/2	Ti ³⁺ 2p3/2
Binding Energy (eV)	464.3	463.1	458.4	457.2
Ratios (% at.)	14.41	14.57	47.96	23.06

Table S3 Ti2p composition from XPS

peaks	N4	N3	N2	N1	TiN
Nitrogen atom components	High-oxidation states-N	Protonated-N	Pyrrolic-N	Pyridinic-N	TiN
Binding Energy (eV)	401.3	400.3	399.5	398.81	397.5
Ratios (atomic %)	12.2	33.4	12.5	5.0	36.9

Table S4 N1s composition from XPS

Table S5 Values of A, dE/dx and the diffusion coefficient D of NT-LTO/C and LTO

Electrodes	A	dE/dx	$D (\mathrm{cm}^2 \mathrm{s}^{-1})$
C-LTO	28.22	15.957	3.01×10 ⁻¹²
LTO	163.22	7.422	1.94×10 ⁻¹⁴

electrodes at a discharge voltage of 2.0 V.

The chemical diffusion coefficients of Li⁺ inside NT-LTO/C and LTO electrodes can be estimated from the impedance results. The following expression for Z_w was derived by solving Fick's law:⁶

$$Z_{w} = A\omega^{-1/2} - jA\omega^{-1/2}$$
 (Eq. S3)

$$A = \frac{V_{\rm M} (dE / dx)}{\sqrt{2}z {\rm F}D^{1/2}a}$$
(Eq. S4)

where, ω is the frequency, $j = \sqrt{-1}$, and the pre-exponential factor *A* is a constant that contains a concentration independent chemical diffusion coefficient, as shown in **Equation S4**. V_M is the molar volume of LTO (45.73 cm³ mol⁻¹), *dE/dx* values are the slope of the NT-LTO/C and LTO electrode potential curves vs. x in **Figure S5**, *z* is the charge transfer number (*z*=1 in the lithium intercalation reaction), *a* is the electroactive surface area of the electrode, which is 1.13 cm² in our testing electrode, F is the Faraday constant, and *D* is the diffusion coefficient. **Figure S6** displays the dependence of the impedances on the frequencies of the NT-LTO/C and LTO electrodes. Both the real and imaginary parts of the impedance were found to be parallel to each other, and proportional to $\omega^{-1/2}$. Based on the slope of the plot, the value of *A* was obtained. Since *A* is inversely proportional to the chemical diffusion coefficient, *D*, as demonstrated in **Equation S4**, the larger A, the slower the diffusion rate of Li⁺ in the solid matrix of the electrode should be. **Table S5** lists the values of the *dE/dx*, *A* and *D* of NT-LTO/C and LTO electrodes. The chemical diffusion coefficients of the NT-LTO/C and LTO electrodes are 3.01×10^{-12} cm² s⁻¹ and 1.94×10^{-14} cm² s⁻¹, respectively.

References

- M. Sathiya, A. S. Prakash, K. Ramesha, J. M. Tarascon, A. K. Shukla, J. Am. Chem. Soc., 2011, 133, 16291-16299.
- Y. Zhou, X. Rui, W. Sun, Z. Xu, Y. Zhou, W. J. Ng, Q. Yan, E. Fong, ACS Nano, 2015, 9, 4628-4635.
- 3. J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C, 2007, 111, 14925-14931.
- R. Wang, S. Wang, D. Jin, Y. Zhang, Y. Cai, J. Ma, L. Zhang, Energy Storage Materials, 2017, 9, 195-205.
- H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L.
 Wu, M. Srinivasan, H. J. Fan, Q. Yan, Adv. Funct. Mater. , 2016, 26, 3082-3093.
- 6. T. Yuan, X. Yu, R. Cai, Y.K. Zhou, Z.P. Shao, J. Power Sources, 2010, 195, 4997-5004.