Phase Transformation, Ionic Diffusion, and Charge Transfer Mechanisms of KVOPO₄ in Potassium Ion Batteries: First-principles Calculations

Ruqian Lian^a, Dashuai Wang^a, Xing Ming^b, Rongyu Zhang^c, Yingjin Wei^{a,*}, Jianrui Feng^a,

Xing Meng^a, Gang Chen^a

^a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education),

College of Physics, Jilin University, Changchun 130012, China.

^b College of Science, Guilin University of Technology, Guilin 541004, China.

^c College of New Energy, Bohai University, Jinzhou 121000, China.

* Corresponding author

Email: yjwei@jlu.edu.cn (Y. J. Wei); Tel: 86-431-85155126

Figure S1. Schematic diagram of $V_{cis}O_6$ and $V_{trans}O_6$. O_{P-O-V} is corner-shared O that connects VO₆ octahedra and PO₄ tetrahedra, O_{V-O-V} is corner-shared O that connects two VO₆ octahedra.

Figure S2. Calculated phonon band structures for VOPO₄.

Figure. S3. Phase diagrams for (a) stage I and (b) stage II ~ IV. Blue circles represent the stable phase of $K_x VOPO_4$ during K extraction, and black circles represent metastable phases with relatively higher energy.

Fig. S4. Electron density distribution of V-O bonds in (a) $KVOPO_4$, (b) $K_{0.5}VOPO_4$, and (c) $VOPO_4$.

KVOPO ₄					
$a = 12.891$ Å; $b = 6.428$ Å; $c = 10.527$ Å; $V = 872.3$ Å ³ ; $\alpha = \beta = \gamma = 90^{\circ}$					
atom	Wychoff	Х	у	Z	
O (1)	4a	0.482	0.478	0.135	
O (2)	4a	0.510	0.471	0.370	
O (3)	4a	0.400	0.194	0.271	
O (4)	4a	0.592	0.187	0.231	
O (5)	4a	0.110	0.310	0.532	
O (6)	4a	0.111	0.690	0.475	
O (7)	4a	0.255	0.534	0.620	
O (8)	4a	0.256	0.456	0.392	
O (9)	4a	0.281	0.546	0.879	
O (10)	4a	0.273	0.458	0.132	
K (1)	4a	0.375	0.779	0.302	
K (2)	4a	0.105	0.696	0.055	
P (1)	4a	0.497	0.331	0.250	
P (2)	4a	0.181	0.500	0.505	
V (1)	4a	0.375	0.497	0	
V (2)	4a	0.247	0.267	0.244	

Table S1. Calculated lattice parameters and atomic positions of KVOPO₄

Concentration	$E_a (eV/f.u.)$	E_b (eV/ f.u.)	E_{c} (eV/ f.u.)
x = 0		$E_{KVOPO4} = -457.46$	
x = 0.125	-451.92	/	-452.11
<i>x</i> = 0.25	-446.30	/	-446.73
x = 0.375	-441.10	/	-441.18
x = 0.5	-435.45	-435.31	-435.62
x = 0.625	-429.84	-429.57	-429.85
x = 0.75	-424.01	-423.70	-424.00
x = 0.875	-418.07	-417.98	-417.97
x = 1		$E_{VOPO4} = -412.24$	

Table S2. Energies of three $K_{1-x}VOPO_4$ ($0 \le x \le 1.0$) configurations, corresponding to Figure 3

		K _{0.5} VOPO ₄			
A = 12.66	A = 12.667 Å; b = 6.315 Å; c = 10.467 Å; V = 837.3 Å ³ ; $\alpha = \beta = \gamma = 90^{\circ}$				
atom	Wychoff	Х	у	Z	
O (1)	4a	0.488	0.487	0.136	
O (2)	4a	0.510	0.466	0.376	
O (3)	4a	0.398	0.194	0.263	
O (4)	4a	0.594	0.188	0.230	
O (5)	4a	0.114	0.325	0.528	
O (6)	4a	0.114	0.709	0.471	
O (7)	4a	0.264	0.562	0.607	
O (8)	4a	0.256	0.474	0.377	
O (9)	4a	0.282	0.559	0.869	
O (10)	4a	0.277	0.471	0.120	
K (1)	4a	0.403	0.842	0.442	
P (1)	4a	0.497	0.338	0.253	
P (2)	4a	0.185	0.516	0.496	
V (1)	4a	0.375	0.518	0.010	
V (2)	4a	0.245	0.250	0.251	

Table S3. Calculated lattice parameters and atomic positions of $K_{0.5}VOPO_4$

Length —	K _{0.5} V	K _{0.5} VOPO ₄		K _{0.125} VOPO ₄	
	K ^b	K°	K ^b	K°	
L_{K-V} (Å)	3.660	3.715	3.607	3.603	
	3.757	3.775	3.722	3.629	
L_{K-P} (Å)	3.500	3.505	3.446	3.479	
	3.630	3.691	3.623	3.597	

Table S4. Lengths of the first- and second-shortest K-V and K-P bonds in $K_{0.5}VOPO_4$ and $K_{0.125}VOPO_4$