Supporting Information

Fe(CN)₆³⁻ ions confined into pillared-porous carbon nanosheets for high energy density supercapacitors

Qihang Zhou,^a Zheng Liu,^a Tong Wei, *^a Lizhi Sheng,^a Yuting Jiang,^a Zimu Jiang,^a and Zhuangjun Fan*^{ab}

a. Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

b. School of Material Science and Engineering, China University of Petroleum, Qingdao 266580, China

*Corresponding author. Tel: +86 451 82569890.

E-mail: weitong666@163.com; fanzhj666@163.com

Figure S1. (a, b) TEM images of the F-OPPCNs.

Sample	$S_{BET}(m^2 g^{-1})$	S_{meso} (m ² g ⁻¹)	V _{total} (cm ³ g ⁻¹)	V_{meso} (cm ³ g ⁻¹)	V _{meso} /V _{total}
PPCNs	843	814	2.179	2.118	97.20%
OPPCNs	772	770	2.043	1.997	97.75%

Table S1. Pore characteristics of the PPCNs and OPPCNs.

Figure S2. XPS spectra of the F-OPPCNs.

Figure S3. (a) The normalized capacity versus $v^{-1/2}$ (inset: separation of the capacitive (blue) and diffusion currents (purple) at a scan rate of 10 mV s⁻¹). (b) Capacitive ratio of the F-OPPCNs at different scan rates.

Figure S4. (a) CV curves at 100 mV s⁻¹ and (b) peak separation average values (ΔE) of the F-OPPCNs, F-AC and F-GO electrodes. (c) Bode plots of phase angle versus frequency. (d) Specific capacitances of the as-prepared electrodes.

Figure S5. The specific capacitance of the F-OPPCNs and FHC-F.

Figure S6. Electrochemical performances of the SGC electrode measured n 1 M Na_2SO_4 electrolyte within a potential window of -1 to -0.2 V (vs SCE). (a) CV curves of SGC at various scan rates from 10 to 500 mV s⁻¹ and (b) the corresponding specific capacitances.

Figure S7. CV curves of the SGC//F-OPPCN supercapacitor at different scan rates.

Electrode ma	aterials	Valtara (V)		Energy density	Power density Ref	
positive electrode	negative electrode	voltage (v)	Electrolyte	(Wh kg ⁻¹)	(W kg ⁻¹)	кет.
Co ₃ O ₄ nanorods	G-16/P-C	1.6	6 M KOH	50.1	400	1
Ni _{0.32} Co _{0.68} (OH) ₂	гGO	1.6	1 M NaOH	24	1000	2
a-Ni(OH) ₂ / rGO	тGO	1.6	1 М КОН	42	400	3
MnO ₂ nanosheets on Ni foam	exfoliated GO	1.6	1 М КОН	25.8	200	4
nickel cobaltite-C	AC	1.6	6 M KOH	36	852	5
Ni ₃ (VO ₄) ₂	AC	1.6	6 M KOH	25.3	240	6
RGO-nickel foam	AC	1.6	6 M KOH	38.6	69.5	7
NiCo-S/Ni foam	nitrogen-doped graphene	1.6	2 М КОН	58.1	796	8
Ni-Co-Mn-OH/rGO	PPD/rGO	1.6	2 М КОН	74.7	1680	9
MnO ₂ /C	CNT/V ₂ O ₅	1.6	1 M Na ₂ SO ₄	75	16	10
MnO ₂ nanowire/graphene	graphene	2	1 M Na ₂ SO ₄	30.4	100	11
MnO ₂ /GO	carbon	2	1 M Na ₂ SO ₄	46.7	100	12
silicon diatom@MnO2	active GO	1.6	1 M Na ₂ SO ₄	23.2	102	13
MnO ₂ /3D-NRGO	3D-NRGO	2	1 M Na ₂ SO ₄	35.3	200	14
RGO/MnO ₂	RGO/MoO ₃	2	1 M Na ₂ SO ₄	42.6	276	15
MnO ₂	РРу	1.7	1 M Na ₂ SO ₄	27.2	850	16
F-OPPCNs	SGC	1.8	1 M Na ₂ SO ₄	48	960	This work

Table S2. Comparison of the performances for previously reported ASCs.

Figure S8. The charge distribution and XYZ coordinate of the optimized structure of OPPCNs.

Center	Atomic	Atomic	c Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-3.822328	0.000000	0.000000
2	6	0	-3.131864	-1.211940	0.000000
3	6	0	-1.730112	-1.238243	0.000000
4	6	0	-1.011093	0.000000	0.000000
5	6	0	-1.730112	1.238243	0.000000
6	6	0	-3.131864	1.211940	0.000000
7	6	0	-0.985825	-2.470535	0.000000
8	6	0	0.409496	0.000000	0.000000
9	6	0	1.129068	-1.247459	0.000000
10	6	0	0.372757	-2.476245	0.000000
11	6	0	2.515932	-1.235477	0.000000
12	1	0	3.086444	-2.160019	0.000000
13	6	0	3.267247	0.000000	0.000000
14	6	0	2.515932	1.235477	0.000000
15	6	0	1.129068	1.247459	0.000000
16	6	0	0.372757	2.476245	0.000000
17	6	0	-0.985825	2.470535	0.000000
18	1	0	-1.540479	3.405589	0.000000
19	1	0	0.922269	3.413892	0.000000
20	1	0	-1.540479	-3.405589	0.000000
21	1	0	-4.908827	0.000000	0.000000
22	1	0	-3.679459	-2.151000	0.000000
23	1	0	-3.679459	2.151000	0.000000
24	1	0	0.922269	-3.413892	0.000000
25	1	0	3.086444	2.160019	0.000000
26	8	0	4.528983	0.000000	0.000000

Standard orientation:

Figure S9. The charge distribution and XYZ coordinate of the optimized structure of carbon with epoxide group (O-C-O).

C 1 1	•	
Standard	orion	totion
Stanuaru	ULICI	tation.

Center	nter Atomic Atomic Coordinates (Angstroms)			roms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-3.610917	-0.076573	-0.132153
2	6	0	-2.966755	1.159062	-0.121287
3	6	0	-1.567048	1.234100	-0.024107
4	6	0	-0.829074	0.032766	0.090002
5	6	0	-1.470007	-1.225435	0.005634
6	6	0	-2.871773	-1.257869	-0.088107
7	6	0	-0.856887	2.500617	-0.050908
8	6	0	0.620766	0.111931	0.285046
9	6	0	1.316745	1.380656	0.026484
10	6	0	0.499996	2.566473	-0.056076
11	6	0	2.682384	1.372580	-0.139237
12	1	0	3.204106	2.321107	-0.245426
13	6	0	3.416659	0.165889	-0.369063
14	6	0	2.826442	-1.064276	-0.380196
15	6	0	1.461977	-1.244902	0.092335
16	6	0	0.669671	-2.444044	-0.226186
17	6	0	-0.678661	-2.437850	-0.161087
18	1	0	-1.227328	-3.357468	-0.352600
19	1	0	1.206147	-3.342797	-0.521302
20	1	0	-1.447259	3.411112	-0.116495
21	1	0	-4.694398	-0.120274	-0.201362
22	1	0	-3.544471	2.077466	-0.191306
23	1	0	-3.377050	-2.218572	-0.150567
24	1	0	1.002765	3.527533	-0.136389
25	1	0	3.343663	-1.925331	-0.796608
26	1	0	4.457882	0.257288	-0.668375
27	8	0	1.151854	-0.658602	1.359235

Figure S10. The charge distribution and XYZ coordinate of the optimized structure of carbon with aldehyde group (C=O).

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Ŷ	Z
1	6	0	4.154793	-0.193617	-0.000011
2	6	0	3.391863	-1.360933	-0.000006
3	6	0	1.989895	-1.301865	0.000000
4	6	0	1.350813	-0.023683	0.000000
5	6	0	2.139900	1.167496	-0.000005
6	6	0	3.539667	1.056784	-0.000011
7	6	0	1.169542	-2.483599	0.000006
8	6	0	-0.071974	0.062368	0.000006
9	6	0	-0.862120	-1.131885	0.000012
10	6	0	-0.188605	-2.403771	0.000011
11	6	0	-2.255997	-1.025404	0.000019
12	1	0	-2.881012	-1.913954	0.000025
13	6	0	-2.877561	0.230099	0.000017
14	6	0	-2.109838	1.398943	0.000010
15	6	0	-0.709511	1.341920	0.000006
16	6	0	0.110460	2.522826	0.000000
17	6	0	1.469174	2.438889	-0.000005
18	1	0	2.075510	3.341389	-0.000009
19	1	0	-0.381524	3.492313	0.000000
20	1	0	1.662842	-3.452487	0.000006
21	1	0	5.239332	-0.259945	-0.000015
22	1	0	3.881276	-2.331720	-0.000006
23	1	0	4.142636	1.961409	-0.000015
24	1	0	-0.794926	-3.305903	0.000016
25	1	0	-2.606389	2.367764	0.000008
26	6	0	-4.354705	0.326797	0.000025
27	1	0	-4.749701	1.367523	0.000101
28	8	0	-5.112852	-0.624320	-0.000070

Figure S11. The charge distribution and XYZ coordinate of the optimized structure of carbon with hydroxy group (C-OH).

a. 1 1		
Standard	orien	tation.
Stanuaru	onten	tation.

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-3.874813	0.000000	0.011980
2	6	0	-3.183540	-1.210485	0.008780
3	6	0	-1.779783	-1.236127	0.002800
4	6	0	-1.063907	0.000000	0.000542
5	6	0	-1.779783	1.236127	0.002800
6	6	0	-3.183540	1.210485	0.008780
7	6	0	-1.030575	-2.463005	-0.002469
8	6	0	0.362096	0.000000	-0.004234
9	6	0	1.079204	-1.235598	-0.008918
10	6	0	0.330995	-2.463607	-0.008833
11	6	0	2.482197	-1.212702	-0.012133
12	1	0	3.048218	-2.140035	-0.025843
13	6	0	3.170237	0.000000	-0.009698
14	6	0	2.482197	1.212702	-0.012133
15	6	0	1.079204	1.235598	-0.008918
16	6	0	0.330995	2.463607	-0.008833
17	6	0	-1.030575	2.463005	-0.002469
18	1	0	-1.579521	3.401772	-0.002201
19	1	0	0.880418	3.401861	-0.014310
20	1	0	-1.579521	-3.401772	-0.002201
21	1	0	-4.961448	0.000000	0.016316
22	1	0	-3.730192	-2.150491	0.010328
23	1	0	-3.730192	2.150491	0.010328
24	1	0	0.880419	-3.401861	-0.014310
25	1	0	3.048218	2.140035	-0.025843
26	8	0	4.558841	0.000000	-0.066518
27	1	0	4.909214	-0.000001	0.837619

Figure S12. The charge distribution and XYZ coordinate of the optimized structure of K₃Fe(CN)₆.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	26	0	0.000038	-0.000034	-0.000037
2	6	0	1.037983	1.276116	-1.118326
3	6	0	1.623835	-0.255865	1.119963
4	6	0	0.590745	-1.539008	-1.113288
5	6	0	-1.623879	0.255856	-1.119852
6	6	0	-1.037981	-1.276252	1.118139
7	6	0	-0.590695	1.539179	1.113444
8	7	0	-0.936207	2.439226	1.783406
9	7	0	2.573328	-0.405290	1.794067
10	7	0	0.936310	-2.438997	-1.783271
11	7	0	-1.645107	-2.022209	1.791361
12	7	0	-2.573435	0.405241	-1.793876
13	7	0	1.644962	2.022132	-1.791615

Standard orientation:

Notes and references

- 1 D. Yu, K. Goh, L. Wei, H. Wang, Q. Zhang, W. Jiang, R. Si, Y. Chen, J. Mater. Chem. A. 2013, 1, 11061– 11069.
- 2 J. Chen, C. Hsu, C. Hu, J. Power Sources. 2014, 253, 205–213.
- 3 S. Bag, C. Raj, J. Mater. Chem. A. 2014, 2, 17848–17856.
- 4 M. Huang, X. Li, F. Li, L. Li, Y. Xin, J. Power Sources. 2015, 277, 36–43.
- 5 Y. Lei, Y. Wang, W. Yang, H. Yuan, D. Xiao, RSC Adv. 2014, 5, 7575–7583.
- 6 R. Kumar, P. Rai, A. Sharma, J. Mater. Chem. A. 2016, 4, 9822–9831.
- 7 X. Bai, Q. Liu, H. Zhang, J. Liu, Z. Li, X. Jing, *Electrochim. Acta*. 2016, 215, 492–499.
- 8 D. Zha, Y. Fu, L. Zhang, J. Zhu, X. Wang, J. Power Sources. 2018, 378, 31–39.
- 9 B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng, X. Deng, Y. Chen, R. Murphy, X. Xiong, B. Song, C. Wong, M. Wang, Adv. Energy Mater. 2018, 8, 1702247.
- 10 B.Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei, Y. Lu, *Adv. Funct. Mater.* 2009,19, 3420–3426.
- 11 Z. Wu, W. Ren, D. Wang, F. Li, B. Liu, H. Cheng, ACS Nano. 2010, 4, 5835–5842.
- 12 Y. Zhao, W. Ran, J. He, Y. Huang, Z. Liu, W. Liu, *Small*. 2015, 11, 1310–1319.
- 13 Y. Zhang, D. Losic, J. Mater. Chem. A, 2017, 5, 10856–10865.
- 14 P. Wang, S. Sun, S. Wang, Y. Zhang, G. Zhang, J Appl Electrochem. 2017, 47, 1293–1303.
- 15 J. Chang, M. Jin, F. Yao, T. Kim, V. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y. Lee, Adv. Funct. Mater. 2013, 23,5074–5083.
- 16 F. Grote, Y. Lei, Nano Energy. 2014, 10, 63-70.