Electronic supplementary information (ESI) for

## The influence of the variation in preferred orientation of tin sulfide absorbers on the performance of thin-film solar cells

Dajeong Lee, <sup>a#</sup> Jae Yu Cho, <sup>a#</sup> Hee-Sun Yun,<sup>bc</sup> Doh-Kwon Lee, <sup>bc</sup> Taehoon Kim,<sup>d</sup> Kijoon Bang,<sup>e</sup> Yun Seog Lee, <sup>df</sup> Ho-Young Kim<sup>df</sup> and Jaeyeong Heo<sup>a\*</sup>

<sup>a</sup>Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea

<sup>b</sup>Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

<sup>c</sup>Division of Nano and Information Technology, KIST school Korea University of Science and Technology, Seoul 02792, Republic of Korea

<sup>d</sup>Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea

<sup>e</sup>Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea

<sup>f</sup>Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea

<sup>#</sup>These authors contributed equally to this work.

\*E-mail: jheo@jnu.ac.kr



**Fig. S1** AFM images of SnS absorbers grown at various durations of (a) 2 min, (b) 10 min, (c) 20 min, and (d) 30 min. Here, the image size is  $10 \ \mu m \times 10 \ \mu m$ . (e) Root-mean-square roughness ( $R_q$ ) of SnS absorbers.



Fig. S2 Plane-view SEM image of SnS absorber grown for 40 min.



**Fig. S3** Cross-sectional SEM images of SnS grown for (a) 2 min, (b) 10 min, (c) 15 min, (d) 20 min, (e) 30 min, and (f) 40 min, respectively.



Fig. S4 Raman spectra for the SnS absorbers at different growth durations from 2 to 30 min.



**Fig. S5** XPS Sn 3d spectra for SnS absorbers grown for 2 min and for 30 min after surface  $Ar^+$  cleaning. Binding energy of 485.6 and 486.5 eV correspond to  $Sn^{2+}$  and  $Sn^{4+}$ , respectively.<sup>R1</sup> Chemical state of Sn for both films is mainly  $Sn^{2+}$ .



**Fig. S6** All the J-V characteristics of the four SnS TFSC samples containing 12 cells each with different growth durations of (a) 2 min, (b) 10 min, (c) 20 min, and (d) 30 min.



**Fig. S7** (a) Series resistance ( $R_{SL}$ ) and (b) shunt conductance ( $G_{SL}$ ) under light for the devices shown in Fig. 6(a).



**Fig. S8** Schematic for the measured band structure of 2-min and 30-min SnS absorbers with CdS buffer using Kraut method.<sup>R2</sup>



**Fig. S9** (a) XPS Sn 4d and Cd 4d peaks on etched 2-min SnS/CdS interface. (b) Sn 4d and (c) valence band on 2-min SnS sample. (d) Cd 4d and (e) valence band on CdS sample.



**Fig. S10** (a) XPS Sn 4d and Cd 4d peaks on etched 30-min SnS/CdS interface. (b) Sn 4d and (c) valence band on 30-min SnS sample.

*XPS measurements*: XPS measurement was performed (Kratos, AXIS-Nova Ultra DLD). The X-ray source was monochromated Al-K $\alpha$  (1486.68 eV) with binding energy calibration. Three samples were prepared: SnS grown on SLG/Mo substrate, CdS grown on FTO substrate, and SLG/Mo/SnS/CdS. In the case of SLG/Mo/SnS/CdS, depth profiling was carried out by 10 KeV Ar<sup>+</sup> ions until the Sn peak was detected. Valence band offset was calculated by using the following formula<sup>R2</sup>:

$$\Delta E_V = E_V^{SnS} - E_V^{CdS} = (E_{Sn\,4d}^{SnS-CdS} - E_{Cd\,4d}^{SnS-CdS}) - (E_{Sn\,4d}^{SnS} - E_V^{SnS}) + (E_{cd\,4d}^{CdS} - E_V^{CdS})$$

where subscription and superscription mean the detected XPS peak and the used sample, respectively.

First, the 2-min SnS/CdS band offset was calculated (see Fig. S9).  $E_{Sn 4d}^{SnS-CdS} - E_{Cd 4d}^{SnS-CdS}$  was calculated to be 13.6 eV (i.e., 24.9 eV–11.3 eV).  $E_{Sn 4d}^{SnS} - E_V^{SnS}$  was measured to be 24.6 eV (i.e., 24.8 eV–0.2 eV).  $E_{cd 4d}^{CdS} - E_V^{CdS}$  was 9.65 eV (i.e., 11.6 eV–1.65 eV). Therefore,  $\Delta E_V$  was -1.35 eV.

Finally, the conduction band offset ( $\Delta E_C$ ) was calculated using the bandgap values of SnS (1.30 eV) and CdS (2.45 eV) estimated from external quantum efficiency.

$$\Delta E_{C} = \left( E_{g}^{CdS} - E_{g}^{SnS} \right) + \Delta E_{V}$$

 $\Delta$  E<sub>C</sub> was determined to be -0.2 eV.

Second, the 30-min SnS/CdS band offset was calculated (see Fig. S10).  $E_{Sn 4d}^{SnS-CdS} - E_{Cd 4d}^{SnS-CdS}$  was calculated to be 13.5 eV (i.e., 24.9 eV–11.4 eV).  $E_{Sn 4d}^{SnS} - E_V^{SnS}$  was measured to be 24.55 eV (i.e., 24.7 eV–0.15 eV).  $E_{cd 4d}^{CdS} - E_V^{CdS}$  was 9.65 eV (i.e., 11.6 eV–1.65 eV). Therefore,  $\Delta E_V$  was - 1.40 eV.

Finally, the conduction band offset ( $\Delta E_C$ ) was calculated using the bandgap values of SnS (1.30 eV) and CdS (2.45 eV) estimated from external quantum efficiency.

$$\Delta E_{\rm C} = \left( E_{\rm g}^{\rm CdS} - E_{\rm g}^{\rm SnS} \right) + \Delta E_{\rm V}$$

 $\Delta E_{\rm C}$  was determined to be -0.25 eV.



**Fig. S11** Normalized  $V_{oc}$  and  $J_{sc}$  as a function of time for (a) continuous illumination and (b) damp-heat (85/85) conditions, respectively.

| Sample  | V <sub>oc</sub><br>(V) | $\frac{J_{\rm sc}}{(\rm mA~cm^{-2})}$ | FF    | η<br>(%) | $R_{SL}$ (ohm cm <sup>2</sup> ) | $G_{SL}$ (mS cm <sup>-2</sup> ) |
|---------|------------------------|---------------------------------------|-------|----------|---------------------------------|---------------------------------|
| 2 min   | 0.157                  | 15.7                                  | 0.264 | 0.654    | 9.1                             | 96.5                            |
|         | 0.134                  | 14.5                                  | 0.268 | 0.521    | 8.4                             | 102.5                           |
|         | 0.124                  | 14.5                                  | 0.26  | 0.466    | 7.8                             | 110.3                           |
|         | 0.105                  | 17.7                                  | 0.256 | 0.479    | 5.5                             | 163.8                           |
|         | 0.172                  | 16.2                                  | 0.265 | 0.734    | 10.0                            | 85.0                            |
|         | 0.158                  | 15.5                                  | 0.259 | 0.634    | 10.0                            | 91.0                            |
|         | 0.100                  | 15.0                                  | 0.253 | 0.378    | 6.7                             | 145.0                           |
|         | 0.088                  | 17.0                                  | 0.254 | 0.380    | 4.6                             | 185.8                           |
|         | 0.207                  | 17.6                                  | 0.269 | 0.981    | 9.2                             | 76.3                            |
|         | 0.119                  | 16.7                                  | 0.273 | 0.54     | 16.7                            | 118.8                           |
|         | 0.114                  | 16.1                                  | 0.257 | 0.473    | 6.0                             | 132.0                           |
|         | 0.142                  | 17.5                                  | 0.259 | 0.645    | 15.4                            | 113.0                           |
| Average | 0.135                  | 16.2                                  | 0.261 | 0.574    | 9.1                             | 118.3                           |
| 10 min  | 0.321                  | 19.1                                  | 0.531 | 3.25     | 3.1                             | 11.8                            |
|         | 0.326                  | 19.7                                  | 0.548 | 3.52     | 5.7                             | 10.8                            |
|         | 0.326                  | 18.4                                  | 0.576 | 3.46     | 3.0                             | 4.3                             |
|         | 0.328                  | 19.3                                  | 0.573 | 3.62     | 3.0                             | 1.8                             |
|         | 0.329                  | 18.6                                  | 0.53  | 3.23     | 3.1                             | 9.3                             |
|         | 0.331                  | 19.0                                  | 0.57  | 3.59     | 2.7                             | 8.0                             |
|         | 0.329                  | 17.4                                  | 0.564 | 3.22     | 3.3                             | 4.0                             |
|         | 0.332                  | 18.3                                  | 0.578 | 3.50     | 2.9                             | 12.0                            |
|         | 0.340                  | 19.5                                  | 0.564 | 3.73     | 2.9                             | 3.8                             |
|         | 0.340                  | 20.0                                  | 0.569 | 3.86     | 2.7                             | 6.5                             |
|         | 0.340                  | 18.8                                  | 0.561 | 3.57     | 2.9                             | 6.0                             |
|         | 0.342                  | 19.8                                  | 0.58  | 3.93     | 2.8                             | 9.3                             |
| Average | 0.332                  | 19.0                                  | 0.562 | 3.54     | 3.2                             | 7.3                             |

**Table S1** Detailed cell parameters for TFSCs with different SnS growth duration. The cell with the highest efficiency for each sample is highlighted in bold with purple background.

| 20 min  | 0.299 | 20.8 | 0.522 | 3.24 | 2.9 | 13.0 |
|---------|-------|------|-------|------|-----|------|
|         | 0.296 | 19.4 | 0.519 | 2.98 | 3.0 | 16.8 |
|         | 0.298 | 20.6 | 0.511 | 3.13 | 2.9 | 12.0 |
|         | 0.298 | 20.8 | 0.5   | 3.10 | 3.0 | 24.5 |
|         | 0.299 | 20.0 | 0.546 | 3.26 | 2.7 | 14.3 |
|         | 0.298 | 18.7 | 0.546 | 3.04 | 3.1 | 18.0 |
|         | 0.299 | 19.7 | 0.543 | 3.21 | 2.8 | 11.5 |
|         | 0.300 | 19.7 | 0.538 | 3.17 | 3.0 | 12.8 |
|         | 0.299 | 18.2 | 0.544 | 2.96 | 3.2 | 8.8  |
|         | 0.296 | 17.3 | 0.548 | 2.81 | 3.0 | 6.0  |
|         | 0.298 | 18.3 | 0.55  | 3.00 | 3.1 | 12.0 |
|         | 0.298 | 18.3 | 0.549 | 2.99 | 3.0 | 9.8  |
| Average | 0.298 | 19.3 | 0.535 | 3.07 | 3.0 | 13.3 |
| 30 min  | 0.238 | 16.5 | 0.334 | 1.31 | 6.0 | 42.0 |
|         | 0.262 | 14.5 | 0.339 | 1.28 | 7.8 | 38.5 |
|         | 0.252 | 14.8 | 0.311 | 1.16 | 8.7 | 41.0 |
|         | 0.255 | 15.5 | 0.318 | 1.26 | 8.3 | 48.3 |
|         | 0.288 | 18.2 | 0.398 | 2.08 | 4.8 | 31.3 |
|         | 0.282 | 16.5 | 0.414 | 1.93 | 5.4 | 24.5 |
|         | 0.270 | 16.7 | 0.351 | 1.58 | 6.1 | 41.0 |
|         | 0.270 | 17.2 | 0.355 | 1.65 | 5.7 | 41.5 |
|         | 0.287 | 18.8 | 0.429 | 2.31 | 4.0 | 31.0 |
|         | 0.283 | 17.7 | 0.427 | 2.14 | 4.3 | 27.5 |
|         | 0.290 | 17.5 | 0.436 | 2.21 | 4.3 | 23.8 |
|         | 0.288 | 17.7 | 0.421 | 2.15 | 4.5 | 28.0 |
| Average | 0.272 | 16.8 | 0.378 | 1.76 | 5.8 | 34.9 |

## **References for ESI**

- R1 T. J. Whittles, L. A. Burton, J. M. Skelton, A. Walsh, T. D. Veal and V. R. Dhanak, *Chem. Mater.*, 2016, 28, 3718–3726.
- R2 R. E. Brandt, M. Young, H. H. Park, A. Dameron, D. Chua, Y. S. Lee, G. Teeter, R. G. Gordon and T. Buonassisi, *Appl. Phys. Lett.*, 2014, **105**, 263901.