Supporting Information

A Highly Efficient and Durable Water Splitting System: Platinum Sub-Nanoclusters

Functionalized Nickel Iron Layered Double Hydroxide as the Cathode and Hierarchical

Nickel Iron Selenide as the Anode

Qing Yan¹, Peng Yan¹, Tong Wei¹, Guiling Wang¹, *, Kui Cheng¹, Ke Ye¹, Kai Zhu¹, Jun Yan¹, Dianxue Cao¹, Yiju Li¹, *

¹Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China

* Corresponding Authors: <u>wangguiling@hrbeu.edu.cn</u> (Guiling Wang) <u>liyijuliyiju2014@outlook.com (</u>Yiju Li)

Experimental Section

Chemicals and Materials: Chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O), sodium borohydride (NaBH₄) and selenium (Se) were served by Sinopharm Chemical Reagent co., Ltd. (Shanghai, China), iron (II) sulfate heptahydrate (FeSO₄·7H₂O) and urea (CO(NH₂)₂) were purchased from Tianli Chemical Reagent Co., Ltd. (Tianjin, China). Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) and ammonium fluoride (NH₄F) were obtained from Fuchen Chemical Reagent Factory (Tianjin, China). All the chemicals were of analytical grade and used without further purification. All the solutions were prepared with Milli-Q water (18.2 MQ·cm). The hydrophilic carbon cloth (Type: HCP330N, Thickness: 0.32 ± 0.02 mm) was bought from Shanghai hesen electric co. Ltd. The commercial Pt/C (Type: HPT020, Platinum content: 19.30-20.70%) was bought from Shanghai hesen electric Ru \geq 75.2%) was bought from Shanghai dibai biotechnology co. LTD.

Synthesis of NiFe LDH/CC: Ni(NO₃)₂·6H₂O (2.0 mmol), FeSO₄·7H₂O (0.5 mmol), NH₄F (10 mmol) and urea (25 mmol) were dissolved in 40 mL deionized H₂O. Then, one piece of carbon fiber cloth (24 mm \times 36 mm) (13.5 mg cm⁻²) was put into the above solution. The mixture was sealed in a 45 ml Teflon-lined stainless-steel autoclave and heated under 120 °C for 16 h. After that, the obtained product was washed with distilled water and ethanol.

Synthesis of Pt-NiFe LDH/CC Electrode: The Pt-NiFe LDH/CC electrode was synthesized *via* a simple wet chemical reduction method. Typically, one piece of the NiFe LDH/CC was immersed into 50 mL H₂O. Subsequently, 0.65 mL H₂PtCl₆· $6H_2O$ (20 mM) was added, and the mixture was heated under 90 °C with continuous stirring for 30 min. After cooling to room temperature, the product was washed with deionized water several times. The mass loadings of Pt-NiFe LDH and Pt on carbon fiber cloth are 3.50 and 0.266 mg cm⁻², respectively (Pure carbon fiber cloth: 13.5 mg cm⁻²). For comparison, the Pt/CC was prepared by replacing the FeNi LDH/CC with a piece of pure carbon fiber cloth.

Synthesis of $(Ni_{0.77}Fe_{0.23})Se_2/CC$ Electrode: Se (2 mmol) and NaBH₄ (4 mmol) were dissolved in 2 mL H₂O. Next, the mixture was diluted into 38 mL H₂O, and a piece of the FeNi LDH/CC was immersed into above solution. The mixture was then transferred into a 45-mL Teflon-lined stainless-steel autoclave and heated under 160 °C for 6 h. The obtained product was washed with deionized water several times.

Synthesis of Com-Pt/C and Com-RuO₂ Electrodes: Typically, the mixture containing 10 mg commercial 20 wt% Pt/C catalysts, 0.5 mL H₂O, 0.5 mL ethanol, and 0.032 mL 5% Nafion were mixed to form catalyst slurry. The Com-Pt/C electrode was fabricated by casting the slurry onto one piece of carbon fiber cloth (10 mm \times 10 mm). The mass loading of active material (20 wt% Pt/C) was controlled to be 3.50 mg cm⁻² (same as the Pt-NiFe LDH/CC electrode). The Com-RuO₂ electrode was prepared by just replacing the commercial 20 wt% Pt/C catalyst with the commercial RuO₂ catalyst.

Characterizations: The morphologies of all the samples were examined by SEM (JEOL JSM-6480) and TEM (FEI Teccai G2 S-Twin, Philips). The phase compositions were characterized by XRD (Rigaku TTR III) using Cu K α radiation ($\lambda = 0.17889$ nm) in a 2 θ range of 20°-80°. The surface chemical states of samples were investigated by XPS using Al K α radiation (Thermo ESCALAB 250). The element contents of samples were measured using ICP-MS (Thermo X Series II) and EDS.

Electrochemical Measurements: The electrochemical performance in a standard three-electrode system was tested with cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronopotentiometry (CP) controlled by a computerized potentiostat (Autolab PGSTAT 302, Eco Chemie company in Holland). The catalysts of Pt-NiFe LDH/CC, (Ni_{0.77}Fe_{0.23})Se₂/CC, Com-Pt/C, Com-RuO₂, NiFe LDH/CC, Pt/CC or CC were served as the working electrode, a Ag/AgCl (saturated KCl) electrode was served as the reference electrode, and a carbon rod was served as the counter electrode. All tests were carried out in a 1.0 M KOH solution. EIS measurements were

accomplished in the frequency range of 10^5 Hz to 0.01 Hz. For overall water splitting, a twoelectrode electrolyzer was constructed using the Pt-NiFe LDH/CC electrode as cathode and the $(Ni_{0.77}Fe_{0.23})Se_2/CC$ electrode as anode. Overall water splitting performance was evaluated using the LSV and CP in a 1.0 M KOH. All measured LSV and CP curves were IR-corrected. All potentials *vs*. RHE are obtained by converting the measured potentials *vs*. Ag/AgCl according to the following equation: $E_{(RHE)} = E_{(Ag/AgCl)} + 0.197 + 0.0592*pH$.

Figure S1. SEM images at different magnifications (a-c) and XRD pattern (d) of CC.

Figure S2. SEM images of the NiFe LDH/CC at low (a) and high (b) magnifications.

Figure S3. HRTEM images of the NiFe LDH (a) and Pt-NiFe LDH nanosheets (b).

Figure S4. SEM images of the Pt/CC electrode at different magnifications.

Figure S5. Nyquist plots of different HER catalysts measured at an overpotential of 200 mV in the frequency range of 10^5 -0.01 Hz. Inset in Figure S5a showing the modified Randle equivalent circuit model.

	R_s (Ohm)	R_{ct} (Ohm)		
Pt-NiFe LDH/CC	1.62	1.1		
Com-Pt/C	1.24	0.49		
Pt/CC	1.55	6.91		
NiFe LDH/CC	1.47	36.5		
CC	1.75	52.4		

Table S1. Summary of R_s and R_{ct} for different HER catalysts by fitting the Nyquist plots using the equivalent circuit model.

Figure S6. SEM images of the Pt-NiFe LDH/CC electrode at different magnifications after HER stability test.

Figure S7. XRD pattern of the $(Ni_{0.77}Fe_{0.23})Se_2/CC$ composite electrode.

Figure S8. EDS plot of the (Ni_{0.77}Fe_{0.23})Se₂/CC.

Table S2. Element	al summary of the	(Ni0.77Fe0.2	$_3)Se_2/CC.$
-------------------	-------------------	--------------	---------------

	Atomic %
Fe	8.31
Ni	27.79
Se	63.90

Table S3. Atomic ratio of Ni/Fe in the (Ni_{0.77}Fe_{0.23})Se₂/CC sample determined by ICP-MS.

	Atomic %		
Fe	21.68		
Ni	78.32		

Figure S9. TEM image of the $(Ni_{0.77}Fe_{0.23})Se_2$ nanosheets.

Figure S10. Nyquist plots of different OER catalysts measured at an overpotential of 300 mV in the frequency range of 10^5 -0.01 Hz. Inset in Figure S10a showing the modified Randle equivalent circuit model.

	R_s (Ohm)	R_{ct} (Ohm)	
(Ni _{0.77} Fe _{0.23})Se ₂ /CC	1.41	0.788	
Com-RuO ₂	1.46	1.07	
NiFe LDH/CC	1.34	1.02	
CC	2.18	138	

Table S4. Summary of R_s and R_{ct} for different OER catalysts by fitting the Nyquist plots using the equivalent circuit model.

Figure S11. SEM images of the $(Ni_{0.77}Fe_{0.23})Se_2/CC$ at different magnifications after OER stability

test.

Figure S12. (a) Ni 2p, (b) Fe 2p, (c) Se 3d and (d) O 1s XPS spectra of the (Ni_{0.77}Fe_{0.23})Se₂/CC after OER stability test.

Water splitting system (HER catalyst OER catalyst)	Support	Electrolyte	Voltage (V)@	Reference	
			10 mA cm ⁻²	Reference	
CoP NS-2 Co ₃ O ₄ NS-2	NF	1 M KOH	1.63	1	
NiFe LDHs/NF NiFe LDHs/NF	NF	1 M KOH	1.7	2	
NiFe ₂ O ₄ /NiFe LDH NiFe ₂ O ₄ /NiFe LDH	NF	1 M KOH	1.535	3	
PA-NiO PA-NiO	NF	1 M KOH	1.56	4	
NiCo ₂ S ₄ @NiFe LDH/					
$NF \parallel NiCo_2S_4 @ NiFe \ LDH /$	NF	1 M KOH	1.6	5	
NF					
$\begin{array}{l} Ni_{0.75}Fe_{0.125}V_{0.125}\text{-}LDHs/NF \parallel \\ Ni_{0.75}Fe_{0.125}V_{0.125}\text{-}LDHs/NF \end{array}$	NF	1 M KOH	1.591	6	
(Ni,Co)Se ₂ -GA (Ni,Co)Se ₂ -GA	NF	1 M KOH	1.60	7	
Co5Mo1.0P NSs@NF Co5Mo1.0O NSs@NF	NF	1 M KOH	1.68	8	
$Ni_{3}S_{2}300 \ Ni_{3}S_{2}300 $	NF	1 M NaOH	1.611	9	
VOOH nanospheres VOOH nanospheres	NF	1 M KOH	1.62	10	
$Co_1Mn_1CH/NF \parallel Co_1Mn_1CH/NF$	NF	1 M KOH	1.68	11	
$Mo_2C@C \parallel Mo_2C@C$	NF	1 M KOH	1.73	12	
NiFe-MOF/NF NiFe-MOF/NF	NF	0.1 M KOH	1.55	13	
Ni@NC-800/NF Ni@NC-800/NF	NF	1 M KOH	1.6	14	
Fe-H ₂ cat Fe-O ₂ cat	IF	1 M KOH	1.65	15	
Co ₃ Se ₄ /CF Co ₃ Se ₄ /CF	CF	1 M KOH	1.59	16	
EG/Co _{0.85} Se/NiFe-LDH EG/Co _{0.85} Se/NiFe-LDH	GF	1 M KOH	1.67	17	
Cu@NiFe LDH Cu@NiFe LDH	CuF	1 M KOH	1.54	18	

Table S5. Performance comparison of our Pt-NiFe LDH/CC \parallel (Ni_{0.77}Fe_{0.23})Se₂/CC water electrolyzer with other water splitting systems.

CoP/NCNHP CoP/NCNHP	СР	1 M KOH	1.64	19
$Co_2P/CNT \parallel Co_2P/CNT$	СР	1 M KOH	1.53	20
Pt-CoS ₂ /CC Pt-CoS ₂ /CC	CC	1 M KOH	1.55	21
NiCoSe ₂ NiCoSe ₂	CC	1 M KOH	1.62	22
Pt-NiFe LDH/CC (Ni0.77Fe0.23)Se2/CC	CC	1 М КОН	1.52	This work

Notes: NF-Nickel foam; IF-Iron foam; CF-Cobalt foam; GF-Graphite foil; CuF-Cu foam; CP-Carbon paper; CC-Carbon fiber cloth.

Referenes

- H. Wu, Z. Chen, J. Zhang, F. Wu, F. Xiao, S. Du, C. He, Y. Wu and Z. Ren, *Small*, 2018, 14, 1702896.
- 2. J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan and M. Gratzel, *Science*, 2014, **345**, 1593-1596.
- 3. Z. Wu, Z. Zou, J. Huang and F. Gao, *ACS Appl. Mater. Interfaces*, 2018, **10**, 26283-26292.
- 4. Z. Li, W. Niu, L. Zhou and Y. Yang, ACS Energy Lett., 2018, 3, 892-898.
- 5. J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao and J. Jiang, ACS Appl. Mater. Interfaces, 2017, 9, 15364-15372.
- 6. K. N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong and Q. Yan, *Small*, 2017, **14**, 1703257.
- 7. X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie and Z. Wang, ACS Catal., 2017, 7, 6394-6399.
- 8. Y. Zhang, Q. Shao, S. Long and X. Huang, *Nano Energy*, 2018, **45**, 448-455.
- 9. J. Dong, F.-Q. Zhang, Y. Yang, Y.-B. Zhang, H. He, X. Huang, X. Fan and X.-M. Zhang, *Appl. Catal.*, *B*, 2019, **243**, 693-702.
- 10. H. Shi, H. Liang, F. Ming and Z. Wang, Angew. Chem. Int. Ed., 2017, 56, 573-577.
- T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan and J. S. Hu, J. Am. Chem. Soc., 2017, 139, 8320-8328.
- 12. H. Wang, Y. Cao, C. Sun, G. Zou, J. Huang, X. Kuai, J. Zhao and L. Gao, *ChemSusChem*, 2017, **10**, 3540-3546.
- 13. J. Duan, S. Chen and C. Zhao, *Nat. Commun.*, 2017, **8**, 15341.

- 14. Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft and R. Xu, *Adv. Mater.*, 2017, **29**, 1605957.
- 15. X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun and Y. Zhang, *Chem*, 2018, DOI: 10.1016/j.chempr.2018.02.023.
- W. Li, X. Gao, D. Xiong, F. Wei, W.-G. Song, J. Xu and L. Liu, *Adv. Energy Mater.*, 2017, 7, 1602579.
- Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energy Environ. Sci.*, 2016, 9, 478-483.
- 18. L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen and Z. Ren, *Energy Environ*. *Sci.*, 2017, **10**, 1820-1827.
- 19. Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, *J. Am. Chem. Soc.*, 2018, **140**, 2610-2618.
- 20. D. Das and K. K. Nanda, *Nano Energy*, 2016, **30**, 303-311.
- 21. X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong and W. Hu, *Adv. Energy Mater.*, 2018, **8**, 1800935.
- 22. J. Yu, Y. M. Tian, F. Zhou, M. L. Zhang, R. R. Chen, Q. Liu, J. Y. Liu, C. Y. Xu and J. Wang, *J. Mater. Chem. A*, 2018, **6**, 17353-17360