Development of high-performance anion exchange membrane

fuel cell using poly(isatin biphenylene) with flexible heterocycle

quaternary ammonium cations

Shuai Zhang^a, Xiuling Zhu^{*a} and Cuihong Jin^a

a State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian

University of Technology, Dalian 116024, P R China

Corresponding authors

Tel.: + 86-411-84986095

Fax: + 86-411-84986095

E-mail address: zhuxl@dlut.edu.cn

Fig.S1 ¹H-NMR spectra of QA, Pyr and Pip (Br⁻ form)

Fig.S2 ¹H-NMR spectra of QAPIB, PyrPIB and PipPIB (Br⁻ form)

Peaks a, b, c, k and m correspond to the protons on aromatic ring. Peaks d correspond to the -CH₂- which is close to the N-H of isatin. Therefore, the degree of grafting for F-PIBs was calculated by using equation:

 $\frac{Area_d}{Area_{(a+b+c+k+m)}}/0.1667$

Fig.S3 SAXS profiles of the PIB-based AEMs

Fig.S4 Proposed degradation mechanism of PIB-based AEM (a) QAPIB, (b) PyrPIB

Fig.S5 the FT-IR spectra of QAPIB, PyrPIB and PipPIB after alkaline treatment and

Fig.S6 the strain-stress curves of wet membranes (a) and TGA curves of AEMs after alkaline stability test (b).

Samples	Tensile	Young's	Modulus	Elongation	at
	strength	(MPa)		break (%)	
	(MPa)				
QAPIB	23.36	497.42		12.37	
PyrPIB	5.63	114.37		6.89	
PipPIB	18.45	419.34		7.0	
QAPIB-alkaline	23.81	718.33		4.61	
PyrPIB-alkaline	6.06	423.18		3.76	
PipPIB-alkaline	31.02	973.12		4.59	

Table S1 The mechanical properties of wet membranes before and after alkaline test

Fig.S7 the ¹H-NMR spectra of (a) QAPIB, (b) PyrPIB and (c) PipPIB after oxidative stability test

Membranes	IEC (mmol·g-	WU (wt%)	SW	σ _{OH-} (mScm ⁻¹)	Reference
	1)		(%)		
PTPipQ6	2.08	44 ^a	-	47.9 ^a	1
PES-MPRD	1.42	36.5 ^b	17.2 ^b	60.4 (Br ⁻ 80 °C)	2
PPO-7Q-1.8	1.8	42 ^a	-	33 ^a	3
PPO-5Q1	1.5	39 ^a	-	14 ^a	4
PES-6-QA	1.48	77.5 ^b	22 ^b	30 ^b	5
D-SC-	2.41	30.4 ^b	0 ^b	58 ^b	6
paAE100%					
ABA-TQA-	1.93	58.6 ^a	18.9 ^a	58.7 ^a	7
44					
8C-SfPAES-	1.49	70 ^b	28ª	38 ^a	8
ImOH					
QAPIB	1.23	32 ^b	9.5 ^b	33.5 ^b	This work
PyrPIB	1.11	40 ^b	8.2 ^b	25.8 ^b	This work
PipPIB	1.26	15 ^b	5.1 ^b	24.6 ^b	This work

Table S2 IEC, water uptake, swelling ratio and hydroxide conductivity of the AEMs

 and reported AEMs

^a Measured at 20 °C

^b Measured at 30 °C

Fig.S8 Hydroxide conductivity of the F-PIBs membranes compared with that of other AEMs with long side chain. (The number in brackets is represented for reference)

Reference

- 1. J. S. Olsson, T. H. Pham and P. Jannasch, Adv. Funct. Mater., 2018, 28, 1702758.
- F. H. Liu, C. X. Lin, E. N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu and Q. L. Liu, J. Membrane Sci., 2018, 564, 298-307.

- 3. H. S. Dang, E. A. Weiber and P. Jannasch, J. Mater. Chem. A, 2015, 3, 5280-5284.
- 4. H. S. Dang and P. Jannasch, *Macromolecules*, 2015, 48, 5742-5751.
- C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye and Q. L. Liu, Journal of Materials Chemistry A, 2016, 4, 13938-13948.
- J. Ran, L. Ding, C. Chu, X. Liang, T. Pan, D. Yu and T. Xu, *J. Mater. Chem. A*, 2018, 6, 17101-17110.
- 7. C. X. Lin, H. Y. Wu, L. Li, X. Q. Wang, Q. G. Zhang, A. M. Zhu and Q. L. Liu, ACS Appl. Mater. Inter., 2018, 10, 18327-18337.
- X. Yan, B. Zhao, J. Liu, X. Zhang and G. He, *Journal of Membrane Science*, 2018, 564, 436-443.