Supporting Information

In-situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries

Xiaobo Zhu, Yue Ouyang, Jiawei Chen, Xinguo Zhu, Xiang Luo, Feili Lai, Hui Zhang,

Yue-E Miao*, Tianxi Liu

Fig. S1 Microscope photographs of different electrospinning precursor solutions: (a) PAN, (b) PAA and (c) PAN₆/PAA₄.

Fig. S2 SEM images and the corresponding pore size distributions (inset) of different membranes: (a) PAN, (b) PAN₈/PAA₂, (c) PAN₄/PAA₆, (d) E-PAN, (e) E-PAN₈/PAA₂, (f) E-PAN₄/PAA₆.

Fig. S3 (a) The pore size distribution, and (b) electrolyte contact angle of Celgard.

Fig. S4 FTIR spectra of different membranes.

Fig. S5 (a) Representative stress - strain curves for various membranes. Tensile fracture photos of (b) PAN₆/PAA₄ and (c) E-PAN₆/PAA₄ separators.

Fig. S6 CV curves of (a, b) Celgard and (c, d) PAN_6/PAA_4 separators obtained at a scanning rate of 0.1 mV s⁻¹ and different scanning rates.

Fig. S7 Linear fits of the peak currents of Li-S batteries with (a) Celgard and (b) PAN_6/PAA_4 separators.

Fig. S8 Electrochemical performance of the batteries assembled by E-PAN₆/PAA₄ at a low electrolyte addition (the ratio of electrolyte/sulfur is about 15 μ L mg⁻¹). (a) First cycle discharge/charge curves and (b) rate performance at 0.1, 0.2, 0.5, 1, 2 and 3 C.

Fig. S9 The cycling performance of batteries with E-PAN₆/PAA₄ and Celgard separators at a low rate of 0.2 C.

Fig. S10 SEM images with the corresponding digital photographs (inset) of (a) the cathode side and (b) anode side of E-PAN₆/PAA₄ separator after 500 cycles of discharge/charge tests.

Fig. S11 SEM images of the Li anodes retrieved from Li-S batteries assembled with (a) E-PAN₆/PAA₄ and (b) Celgard separators after the cycling test.

Samples	Thickness (μm)	Porosity (%)	Density (g cm ⁻³)	Contact angle (°)	
Celgard	26	40.1	0.57	37.2	
PAN	30	91.2	0.16	0	
PAN ₈ /PAA ₂	32	90.5	0.17	0	
PAN ₆ /PAA ₄	33	87.3	0.15	0	
PAN ₄ /PAA ₆	34	83.1	0.16	0	
E- PAN ₈ /PAA ₂	28	37.1	0.17	0	
E- PAN ₆ /PAA ₄	30	29.4	0.17	0	
E- PAN ₄ /PAA ₆	29	19.6	0.19	0	

 Table S1. Physical properties of different membranes.

Samples	The remaining weight (wt%)		
PAN	53.7		
PAN ₈ /PAA ₂	43.0		
PAN ₆ /PAA ₄	34.6		
PAN ₄ /PAA ₆	34.5		
E-PAN ₈ /PAA ₂	41.2		
E-PAN ₆ /PAA ₄	34.7		
E-PAN ₄ /PAA ₆	31.5		
РАА	12.5		

Table S2. TGA analyses for different samples.

Samples	Tensile strength (MPa)	Elongation at break (%)	Young's modulus (MPa)
PAN	1.61 ± 0.27	40.17 ± 4.12	4 ± 1
PAN ₈ /PAA ₂	10.88 ± 1.96	53.40 ± 4.31	167 ± 21
PAN ₆ /PAA ₄	15.82 ± 1.31	82.22 ± 2.14	485 ± 26
PAN ₄ /PAA ₆	23.75 ± 2.19	105.23 ± 2.51	541 ± 43
E-PAN ₈ /PAA ₂	22.41 ± 3.07	28.24 ± 1.78	396 ± 34
E-PAN ₆ /PAA ₄	27.17 ± 3.36	47.33 ± 1.59	637 ± 63
E-PAN ₄ /PAA ₆	13.28 ± 1.34	34.50 ± 1.34	95 ± 32
Celgard-1	14.09 ± 2.16	78.64 ± 4.87	485 ± 47
Celgard-2	84.34 ± 4.12	18.44 ± 1.86	642 ± 69

Table S3. Summary of the mechanical properties of different membranes.

Parameters	$\mathrm{R}_{0}\left(\Omega ight)$	$R_{ct}(\Omega)$	$R_{sf}(\Omega)$	
PAN	3.5	3.9	~	
PAN ₈ /PAA ₂	4.9	7.2	2.7	
PAN ₆ /PAA ₄	6.5	8.4	13.2	
PAN ₄ /PAA ₆	5.0	11.4	9.7	
E-PAN ₈ /PAA ₂	14.4	23.8	13.6	
E-PAN ₆ /PAA ₄	15.6	32.7	15.7	
E-PAN ₄ /PAA ₆	33.1	44.2	19.3	
Celgard	8.7	12.4	14.4	

Table S4. Fitted values for the equivalent circuit elements of the electrochemical impedance spectroscopy.

Table S5. Summary of the Li⁺ diffusion coefficient (D_{Li^+}) for Celgard, PAN₆/PAA₄ and E-PAN₆/PAA₄ separators.

Parameters	Celgard	PAN ₆ /PAA ₄	E-PAN ₆ /PAA ₄	
D_{Li^+} at peak R ₁ (cm ² s ⁻¹)	6.62×10 ⁻¹⁵	2.28×10 ⁻¹⁴	8.65×10 ⁻¹⁵	
D_{Li^+} at peak R ₂ (cm ² s ⁻¹)	4.87×10 ⁻¹⁵	2.65×10 ⁻¹⁴	4.87×10 ⁻¹⁵	
D_{Li^+} at peak O ₁ (cm ² s ⁻¹)	3.04×10 ⁻¹⁴	1.30×10 ⁻¹³	3.46×10 ⁻¹⁴	

Separator	Sulfur (%)	Initial capacity (mA h g ⁻¹)	Rate capability (mA h g ⁻¹)	Fading rate per cycle (%)	Refs	
MoS ₂ /Celgard	65	1471	550	0.08	1	
		(0.1 C)	(1 C)	(0.5 C, 600 cycles)		
	80	930	623	0.14 (0.4 A g ⁻¹ , 100 cycles)		
Black phosphorus/Celgard		(0.4 Ag^{-1})	(3.5 Ag^{-1})		2	
KD@Ir/Colcord a	75	1600	653	0.11	2	
KB@II/Celgard "		(0.1 C)	(2 C)	(1 C, 500 cycles)	3	
Janus cation exchange	60	1227	610	0.24	4	
membranes		(0.05 C)	(2 C)	(0.2 C, 100 cycles)	4	
Crashers /s shares and see (A1.0	60	1067	780	0.25	5	
Graphene/polypropylene/Al ₂ O ₃		(0.2 C)	(2 C)	(0.2 C, 100 cycles)		
DAA SWNT/Colgord b	65	1130	592	0.13	6	
FAA-SWINI/Ceigaiu		(0.1 C)	(2 C)	(1 C, 200 cycles)	0	
	75	1130	600	0.05	7	
COF@CN1/Celgard v		(0.2 C)	(10 C)	(2 C, 300 cycles)	1	
	70	713	373	0.07	8	
PAA/Celgard "		(0.1 C)	(2 C)	(0.5 C, 600 cycles)		
CO membrane/Colored	63	920	580	0.26	0	
GO membrane/Ceigard		(0.1 C)	(2 C)	(0.1 C, 100 cycles)	7	
E DANI/DA A	60	1232	563	0.03	This work	
L-FAIN/FAA		(0.1 C)	(2 C)	(1 C, 500 cycles)	1 NIS WORK	

Table S6. Comparison of the electrochemical performance of this work with previousworks involving different separators using carbon-sulfur cathodes in Li-S batteries.

KB@Ir/Celgard ^a: Ketchen Black and Ir nanoparticle modified Celgard.

PAA-SWNT/Celgard ^b: Poly(acrylic acid) coated single-walled carbon nanotube film on Celgard.

COF@CNT/Celgard ^c: Microporous covalent organic framework (COF) net and mesoporous carbon nanotube (CNT) net modified Celgard.

PAA/Celgard ^d: Poly(acrylic acid) modified Celgard.

References

- Z. A. Ghazi, X. He, A. M. Khattak, N. A. Khan, B. Liang, A. Iqbal, J. X. Wang, H. Sin, L. S. Li and Z. Y. Tang, *Adv. Mater.*, 2017, 29, 1606817.
- J. Sun, Y. M. Sun, M. Pasta, G. M. Zhou, Y. Z. Li, W. Liu, F. Xiong and Y. Cui, *Adv. Mater.*, 2016, 28, 9797-9803.
- P. J. Zuo, J. F. Hua, M. X. He, H. Zhang, Z. Y. Qian, Y. L. Ma, C. Y. Du, X. Q. Cheng, Y. Z. Gao and G. P. Yin, *J. Mater. Chem. A*, 2017, 5, 10936-10945.
- 4. Z. Li, Y. Han, J. H. Wei, W. Q. Wang, T. T. Cao, S. M. Xu and Z. H. Xu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 44776-44781.
- R. S. Song, R. P. Fang, L. Wen, Y. Shi, S. G. Wang and F. Li, *J. Power Sources*, 2016, **301**, 179-186.
- 6. J. H. Kim, J. Seo, J. Choi, D. Shin, M. Carter, Y. Jeon, C. W. Wang, L. B. Hu and U. Paik, ACS Appl. Mater. Interfaces, 2016, 8, 20092-20099.
- J. T. Yoo, S. J. Cho, G. Y. Jung, S. H. Kim, K. H. Choi, J. H. Kim, C. K. Lee, S. K. Kwak and S. Y. Lee, *Nano Lett.*, 2016, 16, 3292-3300.
- S. L. Song, L. Shi, S. Y. Lu, Y. C. Pang, Y. K. Wang, M. Zhu, D. W. Ding and
 S. J. Ding, *J. Membr. Sci.*, 2018, 563, 277-283.
- J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen and F. Wei, ACS Nano, 2015, 9, 3002-3011.