Tuning the activity of N-doped carbon for CO₂ reduction via in-situ encapsulation of nickel nanoparticles into- nanohybrid carbon substrates

Cheng-Zong Yuan,[†]^a Hong-Bao Li,^{†a,b}* Yi-Fan Jiang,^a Kuang Liang,^a Sheng-Jie Zhao,^a Xiao-Xiang Fang,^a Liu-Bo Ma,^a Tan Zhao,^a Cong Lin^a and An-Wu Xu^a*

^{*a*} Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

^b Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

Fig. S1 The corresponding optical photographs of (a) Phen solution, (b) Ni-Phen in acetone solution and (c) Ni-Phen complex powder.

Fig. S2 The scanning electron microscope (SEM) image of obtained N-CHS.

Fig. S3 The particle size distribution of the Ni NPs on the Ni/N-CHS determined from the TEM analysis.

Fig. S4 X-ray diffraction (XRD) characterization of the as-synthesized N-CHS.

Fig. S5 The XPS survey spectrum of Ni/N-CHS sample.

Fig. S6 The N K-edge X-ray absorption near-edge structure (XANES) spectrum of Ni/N-CHS.

Fig. S7 The high-resolution C 1s XPS spectrum of Ni/N-CHS.

Fig. S8 The Nyquist plots of Ni/N-CHS and N-CHS catalysts.

Fig. S9 The CO_2RR performances of N-C synthesized similarly without adding Ni source. The FE of CO production over N-C decreases from the potential -0.6 to -1.2 V, because the competing HER is dominant at high potential.

Fig. S10 The XRD pattern of obtained N-C.

Fig. S11 The SEM image of obtained N-C.

Fig. S12 The TEM image of obtained N-C.

Fig. S13 The TEM image of this catalyst after electrocatalysis.

Fig. S14 (a) Structures and sizes of the optimized Ni_n clusters (n = 4, 5, 6, 10, 13). The distorted structure Ni_{10} was abandon. (b) C_{60} and its various derivatives: N-CHS, Ni_4 /N-CHS and Ni_6 /N-CHS.

Table	S1.	Comparison	the	performances	of	electrochemical	reduction
CO ₂ in	to C	O production	ove	r some state-of	-the	-art materials.	

Catalysts	Electrolyte	Potential (V vs. RHE)	FE _{CO} (%)	Ref.
Ni-CHS	0.5 М КНСО ₃	- 0.9	93	This work
Pd NPs	0.1 M KHCO ₃	- 0.89	91.2	1
Pd/C	0.5 M KHCO ₃	- 0.6	40	2
Au NPs	0.5 М КНСО ₃	- 0.67	90	3
Zn dendrite	0.5 M KHCO ₃	- 1.1	79	4
Ni–N–C	0.1 M KHCO ₃	- 0.75	85	5
Graphene foam	0.1 M KHCO ₃	- 0.58	85	6

References

D. F. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. X. Wang, J. G.
Wang and X. H. Bao, *J. Am. Chem. Soc.*, 2015, **137**, 4288–4291.

2. W. C. Sheng, S. Kattel, S. Y. Yao, B. H. Yan, Z. X. Liang, C. J. Hawxhurst, Q. Y. Wu and J. G. G. Chen, *Energy Environ. Sci.*, 2017, **10**, 1180–1185.

W. L. Zhu, R. Michalsky, O. Metin, H. F. Lv, S. J. Guo, C. J. Wright,
X. L. Sun, A. A. Peterson and S. H. Sun, *J. Am. Chem. Soc.*, 2013, 135, 16833–16836.

4. J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore and F. Jiao, ACS Catal., 2015, **5**, 4586–4591.

W. Ju, A. Bagger, G. P. Hao, A. S. Varela, I. Sinev, V. Bon, B. R. Cuenya, S. Kaskel, J. Rossmeisl and P. Strasser, *Nat. Commun.*, 2017, 8, 944.

6. J. J. Wu, M. J. Liu, P. P. Sharma, R. M. Yadav, L. L. Ma, Y. C. Yang,X. L. Zou, X. D. Zhou, R. Vajtai, B. I. Yakobson, J. Lou and P. M.Ajayan, *Nano Lett.*, 2016, 16, 466–470.